Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.12Keywords:
Nanophthalmos, IOL power calculation, short axial length, cataract surgery, Accuracy of IOL PowerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aim: To compare the predictive accuracy of three widely used IOL power calculation formulas—Hoffer Q, SRK/T, and SRK II—in adult patients with nanophthalmos undergoing cataract surgery or clear lens extraction. Methods: This retrospective observational study included 45 eyes with axial lengths ≤ 20.5 mm diagnosed with nanophthalmos. All patients underwent uncomplicated cataract surgery or clear lens extraction with posterior chamber IOL implantation. Preoperative biometry was performed using ZEISS IOL Master 700 or NANO AXIS A-scan. IOL power was calculated using Hoffer Q, SRK/T, and SRK II formulas. Postoperative spherical equivalent was recorded at one month, and prediction error was calculated as the difference between actual and predicted refraction. Mean absolute error (MAE) and percentage of eyes within ±0.25 D, ±0.50 D, ±1.00 D, and ±2.00 D were assessed. Statistical analysis included one-sample t-tests and descriptive statistics using SPSS version 26. Results: The Hoffer Q formula showed the lowest mean absolute prediction error (−0.44 ± 0.30 D), followed by SRK/T (+0.68 ± 0.73 D), while SRK II exhibited the highest error (+3.28 ± 0.52 D). The Hoffer Q formula demonstrated superior accuracy, with 75.6% of eyes within ±0.50 D and 93.3% within ±1.00 D of the target refraction. SRK II showed a statistically significant hyperopic shift (p < 0.001), whereas Hoffer Q and SRK/T did not show statistically significant differences from zero prediction error. Conclusion: Among the three formulas studied, the Hoffer Q formula provided the most accurate IOL power prediction in nanophthalmic eyes, with the lowest refractive error and highest consistency. These findings support the use of Hoffer Q in managing cataract patients with nanophthalmos and highlight the need for further evaluation of advanced formulas in this subgroup.Abstract
How to Cite
Downloads
Similar Articles
- Aishwarya Jha, Jyoti Gangta, Neha Kapur, Comparison of anterior corneal aberrometry, keratometry and pupil size with Scheimpflug tomography and ray tracing aberrometer in moderate and high refractive error , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Ruchira P Dudhrejiya, A critical analysis of power dynamics in Vijay Tendulkar's theatrical tapestry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Seema Rani Sarraf, S.N. Dubey, STRESS AND ACADEMIC ACHIEVEMENT IN RELATION TO DURATION OF SLEEP AND COURSE , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

