Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.12Keywords:
Nanophthalmos, IOL power calculation, short axial length, cataract surgery, Accuracy of IOL PowerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aim: To compare the predictive accuracy of three widely used IOL power calculation formulas—Hoffer Q, SRK/T, and SRK II—in adult patients with nanophthalmos undergoing cataract surgery or clear lens extraction. Methods: This retrospective observational study included 45 eyes with axial lengths ≤ 20.5 mm diagnosed with nanophthalmos. All patients underwent uncomplicated cataract surgery or clear lens extraction with posterior chamber IOL implantation. Preoperative biometry was performed using ZEISS IOL Master 700 or NANO AXIS A-scan. IOL power was calculated using Hoffer Q, SRK/T, and SRK II formulas. Postoperative spherical equivalent was recorded at one month, and prediction error was calculated as the difference between actual and predicted refraction. Mean absolute error (MAE) and percentage of eyes within ±0.25 D, ±0.50 D, ±1.00 D, and ±2.00 D were assessed. Statistical analysis included one-sample t-tests and descriptive statistics using SPSS version 26. Results: The Hoffer Q formula showed the lowest mean absolute prediction error (−0.44 ± 0.30 D), followed by SRK/T (+0.68 ± 0.73 D), while SRK II exhibited the highest error (+3.28 ± 0.52 D). The Hoffer Q formula demonstrated superior accuracy, with 75.6% of eyes within ±0.50 D and 93.3% within ±1.00 D of the target refraction. SRK II showed a statistically significant hyperopic shift (p < 0.001), whereas Hoffer Q and SRK/T did not show statistically significant differences from zero prediction error. Conclusion: Among the three formulas studied, the Hoffer Q formula provided the most accurate IOL power prediction in nanophthalmic eyes, with the lowest refractive error and highest consistency. These findings support the use of Hoffer Q in managing cataract patients with nanophthalmos and highlight the need for further evaluation of advanced formulas in this subgroup.Abstract
How to Cite
Downloads
Similar Articles
- Mantsha Rayeen, Roshni Sengupta, Sanjay Chaudhary, Short-term changes in lens vault post implantable collamer lens surgery in myopic patients , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Vaishali P. Kuralkar, Prabodh Khampariya, Shashikant M. Bakre, Study and analysis of the stochastic harmonic distortion caused by multiple converters in the power system (micro-grid) , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Kumar, M. Santhanalakshmi , R. Navaneethakrishnan, Content addressable memory for energy efficient computing applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Ashutosh Kumar, The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Mahalakshmi, M. Manimekalai, Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

