A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.16Keywords:
Keywords—COVID-19 Prediction, Deep Learning, Convolutional Neural Network, Long-Short-Term Memory, Attention Mechanism, Hybrid OptimizerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COVID-19 pandemic alerts the necessity of preparing alternate respirational health detective measures that improve time, expense, and prediction performance. Prevention of COVID-19 spread depends on early identification and precise diagnosis. Since the commonly used real-time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) swab test is laborious and unreliable, radiography images are still advised for chest screening. Unfortunately, complexities in early detection using traditional approaches urge innovative research in this field. Intending to introduce a novel COVID-19 prediction scheme, this paper employed a COVIDNet-Predictor. This model is built with various stages including preprocessing, segmentation, feature extraction, selection and fusion, prediction and monitoring. The input images are initially preprocessed to enhance image quality and noise reduction. A U-net segmentation is carried out to find the Region of Interest (ROI). Color, shape and textual features are extracted and are further optimally chosen by a hybrid optimizer EvoNSGA II. Besides, the optimal features are fused through a Hierarchical Attention Network (HAN) and given as input to the COVIDNet-Predictor. The proposed COVIDNet-Predictor is a combination of Multi-Head Convolutional Neural Network (MHCNN), and Long-Short-Term Memory (LSTM)architectures. Additionally, a monitoring and feedback loop is added to make the model fit the real-time applications based on patient data. The efficacy of the proposed COVIDNet -Predictor is evaluated via a comparison with SOTA models and proved its competence by attaining 95.04% accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

