A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.16Keywords:
Keywords—COVID-19 Prediction, Deep Learning, Convolutional Neural Network, Long-Short-Term Memory, Attention Mechanism, Hybrid OptimizerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COVID-19 pandemic alerts the necessity of preparing alternate respirational health detective measures that improve time, expense, and prediction performance. Prevention of COVID-19 spread depends on early identification and precise diagnosis. Since the commonly used real-time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) swab test is laborious and unreliable, radiography images are still advised for chest screening. Unfortunately, complexities in early detection using traditional approaches urge innovative research in this field. Intending to introduce a novel COVID-19 prediction scheme, this paper employed a COVIDNet-Predictor. This model is built with various stages including preprocessing, segmentation, feature extraction, selection and fusion, prediction and monitoring. The input images are initially preprocessed to enhance image quality and noise reduction. A U-net segmentation is carried out to find the Region of Interest (ROI). Color, shape and textual features are extracted and are further optimally chosen by a hybrid optimizer EvoNSGA II. Besides, the optimal features are fused through a Hierarchical Attention Network (HAN) and given as input to the COVIDNet-Predictor. The proposed COVIDNet-Predictor is a combination of Multi-Head Convolutional Neural Network (MHCNN), and Long-Short-Term Memory (LSTM)architectures. Additionally, a monitoring and feedback loop is added to make the model fit the real-time applications based on patient data. The efficacy of the proposed COVIDNet -Predictor is evaluated via a comparison with SOTA models and proved its competence by attaining 95.04% accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jadhav Girish Vasantrao, Chirag Patel, AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Merla Agnes Mary, Britto Ramesh Kumar, Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

