RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.16Keywords:
Internet of things, Wireless sensor network, Recurrent neural network, Random forest, Support vector machine, DDOS attack.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Distributed Denial of Service (DDoS) attacks have significantly impacted network performance and stability in Internet of Things (IoT) Wireless Sensor Networks (WSNs) that utilize the Routing Protocol for Low-Power and Lossy Networks (RPL). These attacks cause severe network degradation or failure by flooding network nodes with malicious traffic, which interferes with communication. This study presents an ensemble of machine-learning techniques to detect DDoS attacks in RPL-based IoT-WSN systems, including an RNN-biased Random Forest (RF) and Support Vector Machine (SVM) classifier. The Recurrent Neural Network (RNN) is used to identify attack sequences by capturing temporal patterns in network data. A Random Forest classifier integrates these temporal features and employs many decision trees to improve detection accuracy. An SVM is used to greatly enhance the detecting process. It differentiates between attack and legitimate traffic using robust decision boundaries. The ensemble model improves overall performance in detecting DDoS attacks with greater accuracy, fewer false positives, and improved flexibility in changing attack plans by utilizing the advantages of each technique. Despite the resource limitations present in IoT-WSN environments, experimental results show that this ensemble technique is effective in real-time detection. This approach offers an effective defense against DDoS attacks for Internet of Things networks, guaranteeing dependable communication in networks with limited power and resources.Abstract
How to Cite
Downloads
Similar Articles
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Manish Kumar, Nirupama Prakash, Saket Bihari, The role of public-private partnerships in facilitating international migration of semi-skilled workers–A case study of Varanasi and nearby districts , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shubharani Muragod, Sangeeta Kharde, Premenstrual syndrome among adolescent girls and its influence on academic performance- A cross-sectional study , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Geeta S. Desai, Santosh Hajare, Sangeeta Kharde, Evaluation of health practices among individuals with non-alcoholic fatty liver disease: A randomized controlled trial , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Faisal Alsanea, Challenging gender norms in parenting styles and their impact on children’s socialization and identity formation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Gunjan Choudhary, Anupriya Roy Srivastava, Examining identity crisis in Samina Ali’s Madras on Rainy Days , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sonal R. Vasant, Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 23 24 25 26 27 28 29 30 31 32 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper

