Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.56Keywords:
Bio-efficiency, Degradability, Surfactant mediated, powder XRD, TEM, FT-IR, TGADimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
One kind of calcium phosphate is calcium pyrophosphate, a biomaterial with a well-known bio-efficiency and a composition like that of bone mineral. It is the most often used mineral family in businesses and research about biomedicine. Calcium phosphates are the most crucial inorganic element found in physiologically hard tissues in living things. Doping with different trace elements may significantly change bone healing material’s biological properties, mineralization, and early degradability. The substitution of cations in the apatite structure to mimic genuine bone, such as K+, Na+, Zn2+, Mn2+ and Mg2+, has received significant interest. The purpose of doing this is to benefit from these cations’ functions in catalysis, affecting biological activity and bone metabolism. The fourth most common cation in the human body is magnesium ion (Mg2+), with a weight percentage (wt%) ranging from 0.44 to 1.23. It is one of the most significant bivalent ions. Calcium pyrophosphate dihydrate (CPPD) nanoparticles that were pure and magnesium ion doped were created using a surfactant-mediated technique. There were four different molar ratios of magnesium to calcium: 0% (Pure CPP), 2, 5, and 10%. The energy dispersive analysis of X-rays (EDAX) study confirmed the effectiveness of the doping. The materials’ nanostructure was verified using transmission electron microscopy (TEM) analysis and Scherrer’s formula for powder XRD signals. Fourier transfer infrared (FTIR) spectra showed that the structure had a variety of bond types. The use of thermogravimetric analysis (TGA) determined the dihydrate nature of the drug. A discussion of the results takes place.Abstract
How to Cite
Downloads
Similar Articles
- Chhavi Kaushik, A.K. Chaubey, STUDIES ON THE EFFICACY OF NEEM AND FUNGAL ISOLATES ON MELOIDOGYNE INCOGNITA INFESTING SOLANUM MELONGENA L. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vishal Panghal, Asha Singh, Dinesh Arora, Nidhi Ahlawat, Sunder S. Arya, Sunil Kumar, Horizontal flow biochar amended constructed wetlands as a sustainable approach for rural wastewater treatment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rashmi Chandra, Afroz Alam, Phytochemical Analysis Using X-ray Diffraction Spectroscopy (XRD) and GC-MS Analysis of Bioactive Compounds in Cucumis sativus L. (Angiosperms; Cucurbitaceae) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
You may also start an advanced similarity search for this article.