The multi-objective solid transshipment problem with preservation technology under fuzzy environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.1.14Keywords:
Solid transshipment problem, Multi objective transshipment problem, Preservation technology, Neutrosophic fuzzy environment, Weighted tchebycheff metrics programmingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To evaluate the efficiency of the preservation technology in the transshipment problem for transporting perishable products throughout the entire distribution system. A mathematical model for multi-objective solid transshipment problem incorporating preservation technology is formulated and a numerical example is provided to validate the effectiveness of this proposed model. To make the problem realistic, all the parameters are considered under a neutrosophic fuzzy environment. Weighted tchebycheff metrics programming has been used to obtain the Pareto-optimal solution of the proposed model. Comparative analysis has been done for multi-objective solid transshipment problems with and without preservation technology. Additionally, comparative analysis has been made for both multi-objective solid transshipment and multi-objective solid transportation problems with and without the inclusion of preservation technology. Also, comparative analysis has been made for multi-objective solid transportation problems with and without the inclusion of preservation technology under the Neutrosophic and Pythagorean fuzzy environments. Optimum Solutions obtained for a given numerical example using the prescribed method reveal that the multi-objective solid transshipment problem with preservation technology gives the minimum deterioration rate and higher transportation cost than the case without preservation technology. While the transportation cost increases, incorporating preservation technology into the transshipment problem enhances both the quality and quantity of perishable items in the distribution system. The efficiency of the multi-objective solid transshipment problem with preservation technology under a neutrosophic fuzzy environment is not yet investigated in the literature.Abstract
How to Cite
Downloads
Similar Articles
- A. Pappa, P. Muruganantham, A. Nagoor Gani, Properties on semi-ring of fuzzy matrices with compatible norm , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jonnakuti V. G. Rama Rao, Muthuvel Balasubramanian, Chaladi S. Gangabhavani, Mutyala A. Devi, Kona D. Devi, A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- B Tharini, R. Rajasudha , A Kannammal, Performance analysis of microstrip patch antenna using binomial series expansion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, A study on recency patterns of cited resources in the cytokine publications from web of science , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

