A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.06Keywords:
Assistant Professor, Department of Information Technology, Bishop Heber College(Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620024, TamilnaduDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The challenge of high-dimensional feature spaces and redundant attributes significantly impacts classification performance in medical datasets. Addressing this, the proposed Enhanced Correlation Attribute Evaluation (E-CAE) method effectively integrates multiple correlation measures such as Pearson, Spearman, Kendall, Biweight Midcorrelation, and Distance Correlation to rank and select the most relevant features. This hybrid feature selection technique was rigorously tested on three datasets: the Darwin dataset, Parkinson’s speech dataset, and Dyslexia dataset. The E-CAE method demonstrated superior classification performance across various models, achieving a remarkable 95.64% accuracy on the Darwin dataset, 93.42% accuracy on the Parkinson’s dataset, and 90.86% accuracy on the Dyslexia dataset. These results notably outperformed traditional feature selection techniques. The novelty of this approach lies in its composite scoring mechanism, which ensures robust feature evaluation and significantly enhances classification accuracy across diverse biomedical datasets.Abstract
How to Cite
Downloads
Similar Articles
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Enthalpy During Complex Formation of Mn(II), Ni(II), Cd(II) and Hg(II) with p-fluorobenzoylthioacetophenone , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- P. Janavarthini, Dr. I. Antonitte Vinoline, Green inventory model for growing items with constraints under demand uncertainty , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

