Development of an Index in Social Science: A Systematic Literature Review
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.09Keywords:
Social sciences, Analytic hierarchy process, Principal component analysisDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the social sciences, indices are vital tools for summarizing and interpreting complex social phenomena by aggregating various indicators into a composite measure. This systematic literature review explores the methodologies employed in developing such indices, emphasizing the challenges of operationalizing abstract social concepts like well-being and inequality. The review identifies common practices in selecting and weighting indicators, with methodologies ranging from simple equal weighting to advanced statistical techniques like Principal Component Analysis (PCA) and the Analytic Hierarchy Process (AHP). Despite the widespread use of these indices, academic literature on their development remains sparse, with much of the existing work carried out by agencies rather than academic researchers. This review fills this gap by analyzing diverse studies across different social science domains, offering insights into best practices for future research. The findings underscore the importance of methodological rigor in ensuring the validity and reliability of indices, which are increasingly relied upon to inform policy and guide social interventions.Abstract
How to Cite
Downloads
Similar Articles
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anand Mishra, Manish Kumar Dube, Harnam Singh Lodhi, Ambrina Sardar Khan, Studies on behavior and morphological changes in freshwater fish, Channa punctatus, under the exposure of untreated sewage water , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Anjum Parvez, Seema Yadav, Sandhya Verma, Electronic Record as Evidence in the Courts: An Analysis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Madhuri Prashant Pant, Jayshri Appaso Patil, Unlocking the potential of big data and analytics significance, applications in diverse domains and implementation of Apache Hadoop map/reduce for citation histogram , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Josephine Theresa S, A Framework for Environment Thermal Comfort Prediction Model , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Ruchi Sharma, Deepa ., Shelly Tyagi, Anju Panwar, Anju Panwar, Satyendra Kumar, Charu Tyagi, Yougesh Kumar, On Annual Cycle of Monogenean Parasites Infestation in Freshwater Fish Pangasius pangasius , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 29 30 31 32 33 34 35 36 37 38 > >>
You may also start an advanced similarity search for this article.

