Development of an Index in Social Science: A Systematic Literature Review
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.09Keywords:
Social sciences, Analytic hierarchy process, Principal component analysisDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the social sciences, indices are vital tools for summarizing and interpreting complex social phenomena by aggregating various indicators into a composite measure. This systematic literature review explores the methodologies employed in developing such indices, emphasizing the challenges of operationalizing abstract social concepts like well-being and inequality. The review identifies common practices in selecting and weighting indicators, with methodologies ranging from simple equal weighting to advanced statistical techniques like Principal Component Analysis (PCA) and the Analytic Hierarchy Process (AHP). Despite the widespread use of these indices, academic literature on their development remains sparse, with much of the existing work carried out by agencies rather than academic researchers. This review fills this gap by analyzing diverse studies across different social science domains, offering insights into best practices for future research. The findings underscore the importance of methodological rigor in ensuring the validity and reliability of indices, which are increasingly relied upon to inform policy and guide social interventions.Abstract
How to Cite
Downloads
Similar Articles
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, A Unified Consistency-Calibrated Boundary-Aware Framework for Generalizable Skin Cancer Detection , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- ARVIND MISHRA , 1SHUBHA NIGAM, CPM TRIPATHI, ARSENIC CONTAMINATION OF GROUND WATER IN ENDEMIC AREA OF UTTAR PRADESH: A CASE STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Aditi Sahariya, Chellapilla Bharadwaj, Iwuala Emmanuel, Afroz Alam, Phytochemical Profiling and GCMS Analysis of Two Different Varieties of Barley (Hordeum vulgare L.) Under Fluoride Stress , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Surender Singh, Rachna Thakur, Suchitra Devi, Globalization and Indian Negotiation on Agriculture , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Kowsalya Ramasamy, Thiyagarajan Krishnan, Performance analysis of RF substrate materials in ISM band antenna applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 33 34 35 36 37 38 39 40 41 42 > >>
You may also start an advanced similarity search for this article.

