Neuroprotective effect of alcoholic extract of Selaginella bryopteris leaves in experimental models of epilepsy
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.14Keywords:
Antiepileptic, Selaginella bryopteris leaves Extract, Seizure Model, Neuroprotection, LC-MSDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Epilepsy, a neurological disorder, is characterized by recurrent, uncontrolled seizures due to an imbalance between inhibitory and excitatory neuronal interactions in the central nervous system (CNS). This study explores the neuroprotective effects of an alcoholic extract from Selaginella bryopteris leaves in experimental epilepsy models. Swiss albino mice (25–30 g) were used, and epilepsy was induced via pentylenetetrazol (PTZ, 60 mg/kg) and maximal electric shock (MES). The extract was administered orally at varying doses and compared with conventional antiepileptic drugs, phenytoin and diazepam. LC-MS analysis identified amentoflavone as a key bioactive compound with antiepileptic properties. The extract demonstrated significant dose-dependent protection in both PTZ and MES models, delaying convulsions in the PTZ model at 500 mg/kg, comparable to diazepam, and providing convulsion protection in the MES model similar to phenytoin. Additionally, the extract increased gamma-aminobutyric acid (GABA) and glutathione (GSH) levels while reducing lipid peroxidation (LPO) levels, indicating its neuroprotective properties. These findings suggest that S. bryopteris leaves possess significant antiepileptic properties and may serve as a promising treatment for epilepsy.Abstract
How to Cite
Downloads
Similar Articles
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Pavani Guntaka, M. Changal Raju, Mopuri Obulesu, A numerical study of unsteady MHD free convection flow with heat and mass transfer across an inclined porous plate, taking hall current and dufour effects by FDM , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Josephine Theresa S, A Framework for Environment Thermal Comfort Prediction Model , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

