Neuroprotective effect of alcoholic extract of Selaginella bryopteris leaves in experimental models of epilepsy
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.14Keywords:
Antiepileptic, Selaginella bryopteris leaves Extract, Seizure Model, Neuroprotection, LC-MSDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Epilepsy, a neurological disorder, is characterized by recurrent, uncontrolled seizures due to an imbalance between inhibitory and excitatory neuronal interactions in the central nervous system (CNS). This study explores the neuroprotective effects of an alcoholic extract from Selaginella bryopteris leaves in experimental epilepsy models. Swiss albino mice (25–30 g) were used, and epilepsy was induced via pentylenetetrazol (PTZ, 60 mg/kg) and maximal electric shock (MES). The extract was administered orally at varying doses and compared with conventional antiepileptic drugs, phenytoin and diazepam. LC-MS analysis identified amentoflavone as a key bioactive compound with antiepileptic properties. The extract demonstrated significant dose-dependent protection in both PTZ and MES models, delaying convulsions in the PTZ model at 500 mg/kg, comparable to diazepam, and providing convulsion protection in the MES model similar to phenytoin. Additionally, the extract increased gamma-aminobutyric acid (GABA) and glutathione (GSH) levels while reducing lipid peroxidation (LPO) levels, indicating its neuroprotective properties. These findings suggest that S. bryopteris leaves possess significant antiepileptic properties and may serve as a promising treatment for epilepsy.Abstract
How to Cite
Downloads
Similar Articles
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rustam Gulomov, Khilolakhon Rakhimova, Avazbek Batoshov, Doniyor Komilov, Bioclimatic modeling of the species Phlomoides canescens (Lamiaceae) , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

