Trust aware clustering approach for the detection of malicious nodes in the WSN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.21Keywords:
Wireless sensor networks, Clustering approach, Low-energy adaptive clustering hierarchy, Malicious node detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Wireless sensor networks (WSNs) are pivotal in a range of applications such as environmental monitoring, healthcare, and defense. However, their decentralized and resource-constrained nature makes them vulnerable to various security threats, particularly from malicious nodes that can disrupt the network’s functionality. To address this issue, this paper proposes a novel trust aware clustering (LEACH) approach integrated with an optimization-based technique for the detection of malicious nodes in WSNs. The proposed model leverages the low-energy adaptive clustering hierarchy (LEACH) protocol for efficient clustering and energy management while incorporating a trust-based mechanism to evaluate the behavior of nodes. Additionally, an optimization algorithm is employed to enhance the accuracy of malicious node detection and improve the overall network performance. The trust model dynamically updates based on node interactions, ensuring that compromised nodes are detected and isolated promptly. Simulation results demonstrate the efficacy of the proposed approach in terms of increased detection accuracy, reduced energy consumption, and prolonged network lifetime, making it a robust solution for securing WSNs against malicious attacks.Abstract
How to Cite
Downloads
Similar Articles
- Pratik Ghosh, Sriram M, A systematic review of social media communication with respect to fashion brands , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Kumbhlesh Kamal Rana, Rajesh Rayal, K.P. Chamoli, Pankaj Bahuguna, Pratibha Baluni, The Riparian Vegetation has Effects on the Faunal Diversity , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Pratibha Baluni, Priya Kathait, Pankaj Bahuguna, C. B. Kotnala, Rajesh Rayal, Analysis of Riparian Vegetation Diversity at Khanda Gad Stream, Garhwal Himalaya, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Enthalpy During Complex Formation of Mn(II), Ni(II), Cd(II) and Hg(II) with p-fluorobenzoylthioacetophenone , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Archana Bansal, Management of Crop-Residue to Control Environmental Hazards , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Shashank Suman, Prashant Kumar, Seasonal Estimation in Primary Productivity of Akilpur Lake in Dighwara, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Manisha Pallvi, Carlson’s Trophic State Index of Shatiya Wetland in Gopalganj District of Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 28 29 30 31 32 33 34 35 36 37 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

