Trust aware clustering approach for the detection of malicious nodes in the WSN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.21Keywords:
Wireless sensor networks, Clustering approach, Low-energy adaptive clustering hierarchy, Malicious node detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Wireless sensor networks (WSNs) are pivotal in a range of applications such as environmental monitoring, healthcare, and defense. However, their decentralized and resource-constrained nature makes them vulnerable to various security threats, particularly from malicious nodes that can disrupt the network’s functionality. To address this issue, this paper proposes a novel trust aware clustering (LEACH) approach integrated with an optimization-based technique for the detection of malicious nodes in WSNs. The proposed model leverages the low-energy adaptive clustering hierarchy (LEACH) protocol for efficient clustering and energy management while incorporating a trust-based mechanism to evaluate the behavior of nodes. Additionally, an optimization algorithm is employed to enhance the accuracy of malicious node detection and improve the overall network performance. The trust model dynamically updates based on node interactions, ensuring that compromised nodes are detected and isolated promptly. Simulation results demonstrate the efficacy of the proposed approach in terms of increased detection accuracy, reduced energy consumption, and prolonged network lifetime, making it a robust solution for securing WSNs against malicious attacks.Abstract
How to Cite
Downloads
Similar Articles
- Samara Ahmed, Adil E. Rajput, Denial, acceptance and intervention in society regarding female workplace bullying - A mental health study on social media , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vikas Jangra, Dr. Vikas Jangra, Vandana, Comparative study of color difference on coated and uncoated paper in digital printing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper