
Abstract
Wireless sensor networks (WSNs) are pivotal in a range of applications such as environmental monitoring, healthcare, and defense. 
However, their decentralized and resource-constrained nature makes them vulnerable to various security threats, particularly from 
malicious nodes that can disrupt the network’s functionality. To address this issue, this paper proposes a novel trust aware clustering 
(LEACH) approach integrated with an optimization-based technique for the detection of malicious nodes in WSNs. The proposed 
model leverages the low-energy adaptive clustering hierarchy (LEACH) protocol for efficient clustering and energy management while 
incorporating a trust-based mechanism to evaluate the behavior of nodes. Additionally, an optimization algorithm is employed to 
enhance the accuracy of malicious node detection and improve the overall network performance. The trust model dynamically updates 
based on node interactions, ensuring that compromised nodes are detected and isolated promptly. Simulation results demonstrate 
the efficacy of the proposed approach in terms of increased detection accuracy, reduced energy consumption, and prolonged network 
lifetime, making it a robust solution for securing WSNs against malicious attacks.
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Introduction
Wireless sensor networks (WSNs) have gained significant 
attention due to their potential to support a wide range of 
applications, from environmental monitoring, healthcare, 
and military surveillance to industrial automation and smart 
cities. A WSN typically consists of a large number of sensor 
nodes that are distributed in an area to collect and transmit 
data to a central base station (BS) or sink node. These sensor 
nodes, which are resource-constrained in terms of energy, 
memory, and computational power, communicate with 
each other and the base station via wireless channels. While 
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WSNs offer a flexible and scalable means of gathering and 
processing data, they are also highly vulnerable to various 
security threats, particularly due to their wireless nature, 
decentralized structure, and unattended deployment in 
hostile environments, Kandris, D., Nakas, C., Vomvas, D., & 
Koulouras, G. (2020), Ibrahim, D. S., Mahdi, A. F., & Yas, Q. M. 
(2021), Fahmy, H. M. A., & Fahmy, H. M. A. (2020), Temene, N., 
Sergiou, C., Georgiou, C., & Vassiliou, V. (2022).

One of the most critical threats in WSNs is the presence of 
malicious nodes. Malicious nodes can degrade the network’s 
performance by disrupting communication, tampering 
with data, draining the network’s energy resources, and 
compromising the overall security of the network. Malicious 
node detection has become a crucial research area, aiming 
to ensure the integrity, reliability, and efficiency of WSN 
operations, Gomathi, S., & Gopala Krishnan, C. (2020), Jane 
Nithya, K., & Shyamala, K. (2022), Anand, C., & Vasuki, N. 
(2021).

Overview of Security Challenges in WSNs
Before delving into malicious node detection, it is important 
to understand the inherent vulnerabilities of WSNs, which 
make them susceptible to attacks, Sharma, S., Bansal, R. K., 
& Bansal, S. (2013, December), Olakanmi, O. O., & Dada, A. 
(2020):
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Limited resources
Sensor nodes have limited energy, processing capabilities, 
and memory, which makes it difficult to implement 
computationally heavy security protocols. This limitation 
makes them prone to energy-draining attacks like the denial 
of service (DoS).

Unreliable communication
WSNs typically use wireless communication channels, 
which are inherently insecure. Adversaries can eavesdrop, 
intercept, or manipulate messages transmitted between 
sensor nodes.

Physical vulnerability
Since sensor nodes are often deployed in hostile or 
remote environments, they can easily be captured or 
physically tampered with by attackers, allowing them to be 
compromised or turned into malicious nodes.

Lack of centralized control
WSNs often operate in an ad-hoc manner without a 
central authority to monitor or secure the network. This 
decentralized structure increases the difficulty of detecting 
and managing malicious activity.

Malicious Nodes in WSNs
Malicious nodes are sensor nodes within the network 
that exhibit abnormal or harmful behavior. These nodes 
can either be compromised by attackers or deployed 
intentionally as rogue devices. Malicious nodes can perform 
a variety of attacks that disrupt the network’s functionality, 
such as, Ramasamy, L. K., KP, F. K., Imoize, A. L., Ogbebor, J. 
O., Kadry, S., & Rho, S. (2021), Lai, Y., Tong, L., Liu, J., Wang, Y., 
Tang, T., Zhao, Z., & Qin, H. (2022), Nagarjun, S., Anand, S., & 
Sinha, S. (2019):

Sinkhole attack
In this attack, a malicious node attracts all the traffic in the 
network by pretending to be a high-quality node (e.g., with 
the shortest path to the sink). Once it has control over the 
traffic, it can drop packets or selectively forward malicious 
information.

Wormhole attack
Two or more malicious nodes collaborate to create a tunnel 
or shortcut, misleading the network into routing packets 
through them. This allows attackers to intercept and 
manipulate the data.

Malicious attack
A malicious node presents multiple fake identities or nodes 
to the network, thereby disrupting routing protocols, 
resource allocation, and voting mechanisms.

Blackhole attack
A malicious node drops all packets that it receives, effectively 

disrupting communication in the network.

Hello flood attack
The malicious node sends high-powered HELLO messages to 
multiple nodes in the network, tricking them into believing 
it is a neighboring node. This causes energy depletion as 
the nodes attempt to communicate with a non-existent 
neighbor.

Detection Techniques for Malicious Nodes
Various techniques have been proposed to detect malicious 
nodes in WSNs, each with its advantages and limitations, 
Yang, H., Zhang, X., & Cheng, F. (2021), Morsi, A. M., Barakat, 
T. M., & Nashaat, A. A. (2020):

Trust-based systems
Trust-based systems monitor the behavior of nodes to assign 
a trust score based on their interactions with other nodes. 
Malicious nodes, which tend to behave abnormally (e.g., 
dropping packets or forwarding incorrect data), receive 
lower trust scores and can be isolated from the network.

Intrusion detection systems (IDS)
IDS in WSNs are designed to monitor the network for 
suspicious activities or policy violations. They can be 
implemented as either signature-based (detecting known 
patterns of attacks) or anomaly-based (detecting deviations 
from normal behavior).

Clustering and cooperative detection
Clustering techniques can group nodes into clusters, with 
cluster heads responsible for monitoring and detecting 
malicious activity within their cluster. This hierarchical 
approach reduces the communication overhead and 
enhances the scalability of detection mechanisms.

Optimization-based approaches
Optimization techniques, such as genetic algorithms, swarm 
intelligence, or machine learning, can be used to fine-tune 
the parameters of detection systems, improving their 
accuracy and minimizing false positives.

Reputation systems
In these systems, nodes build reputations based on their 
behavior over time. Nodes with consistently malicious 
behavior lose reputation points and may eventually be 
excluded from network activities.

Low-Energy Adaptive Clustering Hierarchy
The low-energy adaptive clustering hierarchy (LEACH) is 
a widely adopted clustering protocol in WSNs designed 
to reduce energy consumption and prolong the network 
lifetime. LEACH enables the self-organization of nodes into 
clusters, where a subset of nodes, known as cluster heads, 
are responsible for aggregating and forwarding data to the 
base station. By rotating the role of cluster heads among 
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nodes in a probabilistic manner, LEACH aims to distribute 
energy usage evenly across the network and mitigate 
premature energy depletion in specific nodes, Kumar, N., 
Desai, J. R., & Annapurna, D. (2020, July), Sampoornam, K. 
P., Saranya, S., Mohanapriya, G. K., Devi, P. S., & Dhaarani, S. 
(2021, February).

Cluster Formation

Setup phase
In the setup phase, each node in the network decides 
whether to become a cluster head for the current round 
based on a probabilistic model. The probability of a node 
becoming a cluster head in a given round is calculated 
using a predetermined threshold and a random number 
generated by each node. Nodes elect themselves as 
cluster heads if their calculated probability exceeds the 
threshold.

Cluster formation
Once cluster heads are elected, non-cluster-head nodes 
join the cluster of the nearest cluster-head based on signal 
strength or other proximity metrics. Each cluster forms a 
local communication subnet, and nodes communicate with 
their respective cluster heads.

Data Aggregation and Forwarding

Data collection
Member nodes within each cluster collect data from their 
surroundings through sensing or data generation processes. 
These nodes transmit their data to the cluster head for 
aggregation and forwarding to the base station.

Aggregation and forwarding
Cluster heads aggregate data received from member nodes 
and transmit the aggregated data to the base station. By 
reducing redundant transmissions and consolidating data 
at the cluster level, LEACH minimizes energy consumption 
and bandwidth usage, thereby prolonging network lifetime.

Cluster Rotation

Energy balancing
To ensure energy usage is balanced across nodes and 
prevent premature depletion of energy in cluster heads, 
LEACH employs a rotation mechanism. In each round, 
cluster heads are re-elected probabilistically based on 
the predetermined threshold. Nodes that have served as 
cluster heads in previous rounds are less likely to be elected 
as cluster heads again, promoting energy balance among 
nodes.

Dynamic adaptation
The rotation of cluster heads allows nodes to share the 
energy-intensive task of data aggregation and forwarding 
over time. Nodes take turns serving as cluster heads, 

allowing energy-depleted nodes to recover while others 
take on the cluster head role. This dynamic adaptation 
mechanism enhances the overall resilience and longevity 
of the network.

Advantages of LEACH

Energy efficiency
LEACH reduces energy consumption by minimizing 
redundant data transmissions and aggregating data at the 
cluster level, thereby prolonging network lifetime.

Decentralized operation
LEACH operates in a decentralized manner, allowing nodes 
to self-organize into clusters without the need for centralized 
control or coordination.

Scalability
LEACH is scalable and can accommodate a large number 
of nodes in the network by dynamically adjusting cluster 
formations and cluster-head rotations.

Proposed Trust Aware Clustering (TAC) Approach For 
Malicious Node Detection

Cluster formation
WSN nodes are grouped into clusters using clustering 
algorithms like LEACH or HEED. Each cluster elects a cluster 
head responsible for coordinating cluster operations and 
security monitoring.

Node trust calculation
Each node calculates trust scores for its neighboring 
nodes based on observed behavior, interactions, and 
communication patterns. Trust metrics may include factors 
such as node reputation, reliability, and consistency in 
adhering to network protocols. The trust calculation 
algorithm assigns a numerical trust value to each neighboring 
node, indicating its level of trustworthiness. 

Cluster-based trust aggregation
Cluster heads aggregate trust scores from cluster members 
to compute cluster-level trust values. Trust aggregation 
techniques such as weighted averaging or reputation 
propagation may be used to combine individual node 
trust scores into a collective trust assessment for the entire 
cluster. 

Anomaly detection
Cluster heads analyze aggregated trust values and network 
behavior to detect anomalies or deviations indicative of 
Malicious attacks. Anomaly detection algorithms compare 
observed trust values with expected norms and thresholds 
to identify suspicious nodes or clusters. 

Malicious attack identification
Nodes or clusters exhibiting suspicious behavior or 
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abnormally low trust scores are flagged as potential 
Malicious attackers. Malicious nodes are identified based 
on criteria such as having multiple low-trust identities, 
inconsistent communication patterns, or unauthorized 
access to resources. 

Response and mitigation
Upon detecting Malicious attacks, appropriate response 
and mitigation measures are implemented to neutralize the 
threat and protect the network. Response strategies may 
include isolating Malicious nodes, revoking their privileges, 
updating routing tables to avoid compromised paths, or 
notifying higher-level authorities for further action.

Algorithm: Trust Aware Clustering Approach for 
Malicious Node Detection

Step 1: Cluster Formation with LEACH

• Step 1.1: Initialization
This involves setting up various parameters and variables 
related to the network, such as node properties, 
communication range, energy levels, etc. These parameters 
will be used throughout the algorithm for decision-making 
and calculations.

• Step 1.2: Set the desired percentage of cluster heads 𝑃
In clustering algorithms like LEACH (Low Energy 
Adaptive Clustering Hierarchy), the selection of 
cluster heads is probabilistic. The parameter 
𝑃 represents the desired percentage of nodes 
that will become cluster heads. It influences the 
probability of each node becoming a cluster head.

• Step 1.3: Set the desired percentage of cluster heads 𝑃
This step initializes a data structure, typically a list, to store 
information about the clusters formed in the network. Each 
entry in the list represents a cluster and contains information 
such as the cluster head node, member nodes, and possibly 
other metadata related to the cluster.

Step 2: Cluster Head Election (LEACH): For each node i in the 
network

• Step 2.1: Calculate the probability Pi of node i becoming 
a cluster head using LEACH

LEACH is a randomized algorithm where each 
node in the network computes its probability of 
becoming a cluster head based on its residual 
energy level. The probability 𝑃i  is calculated using 
the formula:

Where P is the desired percentage of cluster heads in the 
network.  is the residual energy of node i. This formula 
ensures that nodes with higher residual energy have a higher 
probability of being selected as cluster heads, but it also 
introduces randomness into the process to evenly distribute 
the cluster head roles across the network.

• Step 2.2: Generate random number  between 0 and 1
Each node generates a random  number uniformly 
distributed between 0 and 1.

• Step 2.3: If  node i becomes a cluster head
The randomly generated number is  compared to the 
probability  calculated for node 𝑖.

• Step 2.4: Add cluster head 𝑖 to the clusters list
If node 𝑖 is selected as a cluster head, it is added to the list 
of clusters in the network. This list maintains information 
about the cluster heads selected in the current round, which 
will be used in subsequent steps of the clustering process.

Step 3: Cluster Formation: For each non-cluster head 
node

• Step 3.1: For each non-cluster head node
This step iterates over all non-cluster head nodes in the 
network, meaning nodes that have not been selected as 
cluster heads in the Cluster Head Election phase.

• Step 3.2: Calculate the distance to each cluster head
For each non-cluster head node, calculate the distance to 
every cluster head in the network. The distance metric can 
be based on various factors such as Euclidean distance, 
signal strength, or hop count.

• Step 3.3: Join the cluster of the nearest cluster head
After calculating distances to all cluster heads, the non-
cluster head node selects the cluster head that is closest to 
it. This selection is typically based on the shortest distance 
or strongest signal strength, depending on the chosen 
metric. The non-cluster head node then joins the cluster of 
the selected nearest cluster head.

• Step 3.4: Add the node to the respective cluster in the 
clusters list

Once a non-cluster head node has determined the nearest 
cluster head and joined its cluster, the node is added to 
the respective cluster in the clusters list. The clusters list 
maintains information about all clusters formed in the 
network, including the cluster head and member nodes of 
each cluster.

Step 4: Node Trust Calculation

• Step 4.1
This step involves setting up the necessary infrastructure 
and parameters to perform trust calculations for each node 
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in the network.

• Define trust metrics and parameters for trust calculation
Trust metrics refer to the factors or attributes used to 
evaluate the trustworthiness of nodes in the network. These 
metrics may include historical behavior, communication 
patterns, reliability, and adherence to network protocols. 
Parameters for trust calculation specify how trust scores will 
be computed based on the defined metrics. For example, 
the weight assigned to each metric, thresholds for trust level 
categorization, and the mathematical formulae for trust 
score computation.

• Initialize trust_scores dictionary
Create a data structure, typically a dictionary, to store the 
calculated trust scores for each node in the network. The 
keys of the dictionary represent the node identifiers, and 
the corresponding values represent the computed trust 
scores. Initializing the trust_scores dictionary ensures that 
trust scores can be efficiently recorded and updated for each 
node during the trust calculation process.

Step 4.2: Calculate Trust Scores

• For each node 𝑖 in the network
This step iterates over each node in the network to compute 
its trust score based on observed behavior metrics.

• Calculate the trust score 𝑇𝑆𝑖 based on observed behavior 
metrics using a trust calculation function

For each node i, a trust score 𝑇𝑆𝑖 is computed using a trust 
calculation function. This function takes into account various 
observed behavior metrics  associated 
with node 𝑖 and combines them to produce a numerical 
value representing the node’s trustworthiness. The trust 
calculation function 𝑓f can vary depending on the specific 
requirements of the WSN and the chosen trust metrics. 
It may involve weighting different metrics, applying 
mathematical transformations, or using machine learning 
algorithms to infer trust scores. The trust score 𝑇𝑆𝑖 reflects 
the node’s reputation, reliability, and adherence to network 
protocols based on its observed behavior. A higher trust 
score indicates a more trustworthy node, while a lower trust 
score suggests potential untrustworthiness. 

• Store the trust score 𝑇𝑆𝑖 in the trust_score directly
Once the trust score 𝑇𝑆𝑖 is computed for node 𝑖, it is stored 
in a data structure such as a dictionary, specifically designed 
to store trust scores for each node in the network. The 
trust_scores dictionary maintains a mapping between node 
identifiers and their corresponding trust scores, allowing for 
efficient retrieval and updating of trust information during 
subsequent steps of the algorithm.

Step 5: Cluster based Trust Aggregation

• Step 5.1: Initialization

This step involves preparing the necessary infrastructure 
and data structures for aggregating trust scores at the 
cluster level.

Initialize variables for trust aggregation
This involves setting up any variables or parameters required 
for the trust aggregation process. These variables may 
include counters, accumulators, or other data structures 
used during the aggregation. For example, variables may 
be used to keep track of the sum or average of trust scores 
within each cluster.

• Initialize cluster_trust_values dictionary
Create a data structure, typically a dictionary, to store the 
aggregated trust values for each cluster in the network. 
Each entry in the cluster_trust_values dictionary represents 
a cluster and contains the aggregated trust value computed 
for that cluster. Initializing the cluster_trust_values 
dictionary ensures that aggregated trust values can be 
efficiently recorded and updated for each cluster during 
the trust aggregation process.

Step 5.2: Aggregate Trust Scores

• For each cluster j in the clusters list
This step iterates over each cluster in the network, where 
each cluster consists of a group of nodes led by a cluster 
head.

• Calculate the cluster-level trust value  using weighted 
averaging

Within each cluster j, the cluster-level trust value  is 
calculated by aggregating the trust scores  of all nodes 
in the cluster. The trust scores of individual nodes within the 
cluster are combined using a weighted averaging technique. 
Each node’s trust score is weighted equality in the case. The 
formula for calculating the cluster-level trust value  is

• Where  represents the trust scores of node i in cluster 
j. N is the total number of nodes in cluster j. 

• This calculation results in a single numerical value 
representing the overall trustworthiness of the cluster, 
derived from the individual trust scores of its member 
nodes.

• Store the cluster-level trust value  in the cluster_trust_
values dictionary

Once the cluster-level trust value  is computed for 
cluster 𝑗j, it is stored in a data structure such as a dictionary. 
The cluster_trust_values dictionary maintains a mapping 
between cluster identifiers and their corresponding cluster-
level trust values. Storing the cluster-level trust values allows 
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for easy access to and retrieval of trust information for each 
cluster during subsequent steps of the algorithm.

Step 6: Anomaly Detection 

• Step 6.1: Initialization
This step involves setting up the parameters and thresholds 
necessary for anomaly detection.  

• Define thresholds and parameters for anomaly detection
Anomaly detection relies on predefined thresholds and 
parameters to identify deviations from expected norms 
in trust values. Thresholds may be set based on empirical 
observations, historical data, or theoretical models to 
distinguish between normal and suspicious trust values. 
Parameters may include criteria for categorizing clusters with 
low trust values as potential candidates for Malicious attacks.

Step 6.2: Detect anomalies
This step involves analyzing the cluster-level trust values to 
identify clusters exhibiting anomalous behavior indicative 
of potential Malicious attacks.

• For each cluster 𝑗 in the cluster_trust_values dictionary
Iterate over each cluster in the network and examine its 
cluster-level trust value .

• Compare the cluster-level trust value  with expected 
norms and thresholds

Compare the computed cluster-level trust value  with 
predefined thresholds and expected norms. Thresholds may 
indicate the minimum acceptable trust level for a cluster to 
be considered normal. Clusters with trust values below this 
threshold are flagged as potential anomalies.

• Identify clusters with suspiciously low trust values as 
potential candidates for Malicious attacks

If the cluster-level trust value  falls below the defined 
threshold, the cluster is identified as exhibiting suspicious 
behavior. Clusters with low trust values may indicate the 
presence of Malicious nodes or other malicious activities 
within the cluster.

Step 7: Malicious Attack Identification

• Step 7.1: Initialization
This step involves setting up the criteria and data structures 
necessary for identifying Malicious nodes. 

• Define criteria for identifying Malicious nodes based on 
anomalous behavior and trust scores

Criteria are established to distinguish between normal 
nodes and potential Malicious attackers based on their 
behavior and trust scores. Anomalous behavior may include 
inconsistent communication patterns, unauthorized access 
to resources, or abnormally low trust scores. Trust scores play 
a crucial role in identifying Malicious nodes, as they indicate 

the trustworthiness of nodes within the network.

• Initialize malicious_nodes list
Create a data structure, such as a list, to store the identifiers 
of nodes flagged as potential Malicious attackers. Initializing 
the malicious_nodes list allows for the efficient tracking 
and management of identified Malicious nodes during the 
identification process.

Step 7.2: Identify Malicious Nodes
This step involves analyzing clusters flagged as potentially 
containing Malicious nodes and identifying individual nodes 
exhibiting suspicious behavior.

• For each cluster flagged as potentially containing Mali-
cious nodes

Iterate over each cluster identified during the anomaly 
detection phase.

• Analyze cluster members for anomalous behavior
Examine the behavior of nodes within the cluster for 
characteristics indicative of Malicious attacks. Look for 
patterns such as multiple identities associated with the 
same node, inconsistent communication behavior, or 
unauthorized access attempts. 

• Flag nodes exhibiting suspicious behavior as potential 
Malicious attackers

If nodes within the cluster demonstrate behavior consistent 
with Malicious attacks, flag them as potential Malicious 
attackers. Add the identifiers of these nodes to the 
malicious_nodes list for further analysis or mitigation.

Step 8: Response and Mitigation

• Step 8.1: Input
This step involves gathering input in the form of response 
strategies aimed at mitigating Malicious attacks.

• Response strategies for mitigating Malicious attacks
Identify and define a set of response strategies tailored to 
neutralize the threat posed by Malicious attacks. Response 
strategies may encompass a range of actions aimed at 
isolating, containing, or eliminating Malicious nodes from 
the network. These strategies are designed to disrupt the 
malicious activities of Malicious attackers and restore the 
integrity and functionality of the WSN.

• Step 8.2: Response strategies
This step involves implementing the identified response 
strategies to neutralize the threat of Malicious attacks.

• Implement appropriate response and mitigation measures
Execute the predefined response strategies to counteract 
Malicious attacks and minimize their impact on the network. 
Response measures may include:

• Isolating Malicious nodes
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Preventing Malicious nodes from participating in 
network activities by disconnecting or blocking their 
communication.

• Revoking their privileges
Removing the network privileges and access rights of 
identified Malicious nodes to prevent further malicious 
actions.

Updating routing tables
Modifying routing tables or network configurations to avoid 
routing traffic through compromised paths associated with 
Malicious nodes.
• Notifying higher-level authorities
Reporting detected Malicious attacks to higher-level 
network administrators or security authorities for further 
investigation or intervention.

The selection and execution of response strategies 
should be guided by the severity of the Malicious attacks, 
network conditions, and the potential impact on network 
performance and stability.

Result And Discussion
In this section, the performance of the proposed TAC 
approach is evaluated with the other trust-aware clustering 
techniques like K-Means, spectral clustering, and density-
based clustering approaches. The performance of the 
proposed TAC is evaluated with performance metrics like 
packet delivery ratio (in %), packet loss (in %), end-to-end 
delay (in %), energy consumption (in Joules) and throughput 
(in mpbs) with varying percentage of malicious nodes in 
the network. 

Performance Analysis with 10% Malicious Nodes in 
WSN
Table 1 depicts the packet loss (in %) obtained by the 
proposed TAC, K-means, spectral and density with 10% 
malicious nodes in the network. 

The table compares packet loss (in %) between the 
proposed trust-aware clustering (TAC) approach and 
three existing clustering techniques: K-Means, Spectral, 
and Density when 10% malicious nodes are present in the 
network. The results are presented for varying numbers of 
nodes, ranging from 80 to 150.

The proposed TAC approach consistently demonstrates 
the lowest packet loss across all node configurations, 
ranging from 2.5 to 4.0%, as the number of nodes increases 
from 80 to 150. This highlights the superior efficiency of the 
TAC approach in mitigating the impact of malicious nodes, 
leading to more reliable packet transmission. K-means 
clustering exhibits higher packet loss, starting at 6.8% with 
80 nodes and gradually increasing to 8.8% with 150 nodes. 
While it performs better than spectral and density-based 
clustering in some cases, it is significantly less effective than 
the TAC approach. Spectral clustering shows the highest 
packet loss, starting at 7.2% for 80 nodes and rising to 9.3% 

for 150 nodes. This indicates that the spectral clustering 
approach struggles to handle malicious nodes effectively, 
leading to higher packet loss. Density-based clustering 
performs better than Spectral but worse than K-Means, with 
packet loss values ranging from 5.9 to 7.8% as the number 
of nodes increases. While it is more efficient than spectral, 
it still lags behind the proposed TAC approach in mitigating 
packet loss.
Table 2 depicts the packet delivery ratio (in %) obtained by 
the proposed TAC, K-means, spectral and density with 10% 
malicious nodes in the network. 

The table compares the packet delivery ratio (PDR in 
%) between the proposed trust-aware clustering (TAC) 
Approach and three existing clustering methods: K-Means, 
Spectral, and Density-based clustering when 10% malicious 
nodes are present. The PDR is measured across networks 
with different numbers of nodes, ranging from 80 to 150.

Proposed TAC Approach consistently achieves the 
highest PDR, ranging from 97.5% with 80 nodes to 96.0% 
with 150 nodes. This demonstrates the TAC approach’s 
superior ability to ensure successful packet delivery despite 
the presence of malicious nodes, highlighting its efficiency in 
managing network reliability. K-means clustering performs 
moderately, with PDR values starting at 93.2% for 80 nodes 
and decreasing to 91.2% for 150 nodes. While it maintains 
a relatively high PDR, it is clearly outperformed by the 
proposed TAC approach. Spectral clustering consistently 
exhibits the lowest PDR, ranging from 92.8% with 80 nodes 
to 90.7% with 150 nodes. The decreasing PDR shows that 
Spectral Clustering is less effective at maintaining high 
packet delivery in the presence of malicious nodes, leading 
to more packet drops. Density-based clustering achieves 
better PDR than Spectral Clustering, with values between 
94.1% and 92.2% across the varying number of nodes. 
However, it is still outperformed by the TAC approach in 
all cases.

Table 3 depicts the End-to-End Delay (in %) obtained by 
the Proposed TAC, K-Means, Spectral and Density with 10% 
malicious nodes in the network. 

Table 1: Packet Loss (in %) obtained by the proposed TAC, K-means, 
spectral and density with 10% malicious nodes

Number of 
nodes

Packet Loss (in %)

Proposed TAC K-means Spectral Density

80 2.5 6.8 7.2 5.9

90 2.8 7.1 7.5 6.3

100 3.0 7.4 7.9 6.5

110 3.2 7.8 8.2 6.8

120 3.4 8.1 8.5 7.0

130 3.6 8.3 8.7 7.3

140 3.8 8.5 9.0 7.5

150 4.0 8.8 9.3 7.8
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The table compares the End-to-End Delay (in %) between 
the Proposed Trust-Aware Clustering (TAC) Approach and 
three existing clustering techniques: K-means, spectral, and 
density-based clustering when 10% malicious nodes are 
present. The results are shown for different network sizes, 
ranging from 80 to 150 nodes.

Proposed TAC Approach achieves the lowest end-to-
end delay across all configurations, with values ranging 
from 1.2% for 80 nodes to 2.2% for 150 nodes. The low 
delay highlights the TAC approach’s efficiency in reducing 
latency during packet transmission, even in the presence 
of malicious nodes, ensuring faster data delivery across the 
network. K-Means Clustering has significantly higher delays 
compared to the TAC approach, starting at 4.5% for 80 nodes 
and increasing to 6.3% for 150 nodes. The gradual increase 
in delay suggests that K-means clustering is less efficient in 
maintaining fast communication as the network size grows 
and malicious nodes affect the network. Spectral clustering 
performs the worst in terms of delay, with values increasing 
from 4.8 to 6.5% as the number of nodes rises from 80 to 
150. This indicates that spectral clustering introduces higher 
delays in packet transmission, making it less suitable for 
latency-sensitive applications. Density-based clustering 
achieves better results than spectral clustering but still lags 
behind K-means and the proposed TAC approach. The end-
to-end delay for density-based clustering starts at 3.9% for 
80 nodes and increases to 5.8% for 150 nodes, indicating 
moderate performance in minimizing latency.

Table 4 depicts the average energy consumption (in 
Joules) obtained by the proposed TAC, K-means, spectral 
and density with 10% malicious nodes in the network. 

The table compares the average energy consumption (in 
Joules) between the proposed trust-aware clustering (TAC) 
approach and three existing clustering techniques: K-means, 
spectral, and density-based clustering, in the presence of 
10% malicious nodes. The average energy consumption is 
measured for varying numbers of nodes, ranging from 80 
to 150. 

Proposed TAC approach consistently demonstrates the 

lowest energy consumption, starting at 0.35 Joules with 80 
nodes and rising to 0.53 Joules with 150 nodes. The lower 
energy consumption reflects the TAC approach’s efficiency 
in managing network operations, even in environments 
with malicious nodes, leading to extended network lifetime. 
K-Means Clustering has higher energy consumption 
compared to TAC, starting at 0.50 Joules for 80 nodes and 
increasing to 0.70 Joules for 150 nodes. The rising energy 
consumption indicates that K-Means clustering requires 
more resources to maintain the network, especially as the 
number of nodes increases. Spectral clustering shows the 
highest energy consumption, ranging from 0.54 to 0.75 
Joules as the number of nodes grows. This suggests that 
Spectral Clustering is the least energy-efficient method, 
consuming more power to perform network tasks and 
handle malicious nodes. Density-based clustering performs 
better than Spectral but worse than K-Means, with energy 
consumption increasing from 0.46 to 0.67 Joules across the 
node range. Although its energy usage is lower than Spectral 
Clustering, it is still significantly higher than the proposed 
TAC approach.

Table 5 depicts the throughput (in Mbps) obtained by 
the proposed TAC, K-means, spectral and density with 10% 
malicious nodes in the network. 

The table compares the throughput (in Mbps) between 
the proposed trust-aware clustering (TAC) approach and 
three existing clustering techniques, K-means, spectral, and 
density-based clustering, in the presence of 10% malicious 
nodes. Throughput is measured for networks with different 
node sizes, ranging from 80 to 150. 

Proposed TAC Approach consistently demonstrates the 
highest throughput, starting at 7.5 Mbps for 80 nodes and 
decreasing to 6.1 Mbps for 150 nodes. This indicates that 
the TAC approach ensures more efficient data transmission, 
even in the presence of malicious nodes, resulting in better 
network performance and higher data flow. K-Means 
Clustering exhibits moderate throughput, starting at 5.8 
Mbps with 80 nodes and decreasing to 4.4 Mbps with 150 

Table 2: Packet Delivery Ratio (in %) obtained by the proposed TAC, 
K-means, spectral and density with 10% malicious Nodes

Number of Number of 
NodesNodes

Packet Delivery Ratio (in %)Packet Delivery Ratio (in %)

Proposed TACProposed TAC K-MeansK-Means SpectralSpectral DensityDensity

8080 97.597.5 93.293.2 92.892.8 94.194.1

9090 97.297.2 92.992.9 92.592.5 93.793.7

100100 97.097.0 92.692.6 92.192.1 93.593.5

110110 96.896.8 92.292.2 91.891.8 93.293.2

120120 96.696.6 91.991.9 91.591.5 93.093.0

130130 96.496.4 91.791.7 91.391.3 92.792.7

140140 96.296.2 91.591.5 91.091.0 92.592.5

150150 96.096.0 91.291.2 90.790.7 92.292.2

Table 3: End-to-end delay (in %) obtained by the proposed TAC, 
K-means, spectral and density with 10% malicious Nodes

Number of 
nodes

End-to-end delay (in %)

Proposed TAC K-Means Spectral Density

80 1.2 4.5 4.8 3.9

90 1.3 4.7 5.0 4.2

100 1.5 5.0 5.3 4.5

110 1.6 5.3 5.6 4.7

120 1.8 5.5 5.8 5.0

130 1.9 5.7 6.0 5.2

140 2.0 6.0 6.2 5.5

150 2.2 6.3 6.5 5.8
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proposed trust-aware clustering (TAC) approach and three 
existing clustering techniques: K-means, spectral, and 
density-based clustering, in the presence of 20% malicious 
nodes. The results are shown for networks with varying sizes, 
ranging from 80 to 150 nodes.

Proposed TAC approach demonstrates the lowest packet 
loss, ranging from 4.2% for 80 nodes to 5.7% for 150 nodes. 
This indicates that the TAC approach effectively minimizes 
packet loss even when the percentage of malicious nodes 
increases, reflecting its robustness in maintaining network 
reliability. K-Means Clustering exhibits significantly higher 
packet loss, starting at 12.5% for 80 nodes and rising to 15.4% 
for 150 nodes. The increasing trend in packet loss indicates 
that K-Means is less capable of handling the challenges 
posed by malicious nodes, leading to a deterioration 
in network performance. Spectral clustering shows the 
highest packet loss among the techniques analyzed, 
ranging from 13.1% with 80 nodes to 16.2% with 150 nodes. 
The substantial packet loss underscores the inefficiency 
of Spectral Clustering in managing malicious activities 
within the network, resulting in a marked decrease in data 
transmission reliability. Density-based clustering performs 
better than Spectral Clustering but remains less effective 
than both the Proposed TAC and K-Means approaches. 
Packet loss ranges from 11.3% for 80 nodes to 14.0% for 
150 nodes, suggesting that while it is somewhat resilient 
to malicious nodes, it still suffers from higher packet loss 
compared to the TAC approach.

Table 7 gives the packet delivery ratio (in %) obtained by 
the proposed TAC, K-means, spectral and density with 20% 
malicious nodes in the network.

The table compares the packet delivery Ratio (in 
%) between the proposed trust-aware clustering (TAC) 
approach and three existing clustering techniques: K-means, 
spectral, and density-based clustering, in the presence of 
20% malicious nodes. The results are presented for networks 
with varying node counts, ranging from 80 to 150. 

Proposed TAC approach consistently achieves the 
highest packet delivery ratio, starting at 95.8% for 80 

Table 4: Average energy consumption (in Joules) obtained by the 
proposed TAC, K-means, spectral and density with 10% malicious 

Nodes

Number of Number of 
nodesnodes

Average Energy Consumption (in Joules)Average Energy Consumption (in Joules)

Proposed TACProposed TAC K-MeansK-Means SpectralSpectral DensityDensity

8080 0.350.35 0.500.50 0.540.54 0.460.46

9090 0.370.37 0.530.53 0.570.57 0.490.49

100100 0.400.40 0.560.56 0.600.60 0.520.52

110110 0.430.43 0.590.59 0.630.63 0.550.55

120120 0.460.46 0.620.62 0.660.66 0.580.58

130130 0.480.48 0.640.64 0.690.69 0.610.61

140140 0.500.50 0.670.67 0.720.72 0.640.64

150150 0.530.53 0.700.70 0.750.75 0.670.67

Table 5: Throughput (in Mbps) obtained by the proposed TAC, 
K-means, spectral and density with 10% malicious nodes

Number of Number of 
nodesnodes

Throughput (in Mbps)Throughput (in Mbps)

Proposed TACProposed TAC K-MeansK-Means SpectralSpectral DensityDensity

80 7.5 5.8 5.4 6.2

90 7.3 5.6 5.2 6.0

100 7.1 5.4 5.0 5.8

110 6.9 5.2 4.8 5.6

120 6.7 5.0 4.6 5.4

130 6.5 4.8 4.4 5.2

140 6.3 4.6 4.2 5.0

150 6.1 4.4 4.0 4.8

nodes. The steady decline in throughput as the number 
of nodes increases shows that K-Means clustering is less 
efficient than the TAC approach in maintaining a high data 
transmission rate. Spectral clustering consistently shows 
the lowest throughput, with values starting at 5.4 Mbps 
for 80 nodes and dropping to 4.0 Mbps for 150 nodes. This 
suggests that Spectral Clustering is less effective at handling 
malicious nodes and maintaining network efficiency, leading 
to a significant decrease in data transmission rates. Density-
based clustering achieves better throughput than spectral 
clustering but remains lower than both K-Means and the 
TAC approach. Throughput starts at 6.2 Mbps for 80 nodes 
and decreases to 4.8 Mbps for 150 nodes, indicating that it 
performs moderately in maintaining data transmission rates 
as the network grows.

Performance Analysis with 20% Malicious Nodes in 
WSN
Table 6 gives the packet loss (in %) obtained by the proposed 
TAC, K-means, spectral and density with 20% malicious 
nodes in the network.

The table compares the packet loss (in %) between the 

Table 6: Packet loss (in %) obtained by the proposed TAC, K-means, 
spectral and density with 20% malicious nodes

Number of 
nodes

Packet Loss (in %)

Proposed TAC K-Means Spectral Density

80 4.2 12.5 13.1 11.3

90 4.5 13.0 13.5 11.7

100 4.7 13.5 14.0 12.1

110 4.9 13.9 14.5 12.5

120 5.1 14.3 15.0 12.9

130 5.3 14.6 15.4 13.2

140 5.5 15.0 15.8 13.6

150 5.7 15.4 16.2 14.0 
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nodes and decreasing slightly to 94.3% for 150 nodes. This 
demonstrates the TAC approach’s effectiveness in ensuring 
reliable data transmission, even with a higher proportion of 
malicious nodes in the network. K-means clustering shows a 
significantly lower packet delivery ratio, beginning at 87.5% 
for 80 nodes and declining to 84.6% for 150 nodes. The 
steady decrease indicates that K-means is less capable of 
maintaining high delivery rates when faced with malicious 
nodes, leading to reduced network efficiency. Spectral 
clustering presents an even lower packet delivery ratio, 
starting at 86.9% for 80 nodes and dropping to 83.8% for 
150 nodes. The consistently lower performance underscores 
the challenges of using spectral clustering in environments 
where malicious activity is prevalent, as it struggles to 
maintain reliable communications. Density-based clustering 
performs slightly better than spectral clustering but still 
lags behind K-means and the proposed TAC approach. The 
packet delivery ratio ranges from 88.7% for 80 nodes to 
86.0% for 150 nodes, indicating moderate reliability but still 
significantly lower than the TAC approach.

Table 8 depicts the End-to-End Delay (in %) obtained by 
the proposed TAC, K-means, spectral and density with 20% 
malicious nodes in the network. 

The table presents the end-to-end delay (in %) observed 
for the proposed trust-aware clustering (TAC) Approach 
compared to three existing clustering techniques: K-means, 
spectral, and density-based clustering in the context of 20% 
malicious nodes. The results are displayed for networks with 
varying sizes, from 80 to 150 nodes. 

The proposed TAC approach exhibits the lowest end-to-
end delay, beginning at 1.5% for 80 nodes and increasing 
to 2.6% for 150 nodes. This indicates that the TAC approach 
is efficient in facilitating timely data transmission, even in 
the presence of a higher percentage of malicious nodes. 
K-Means Clustering shows a significantly higher end-to-end 
delay, starting at 5.2% for 80 nodes and rising to 7.0% for 
150 nodes. The continuous increase in delay suggests that 
K-means is less effective at ensuring prompt data delivery, 
likely due to its struggles with the presence of malicious 

nodes. Spectral clustering demonstrates the highest end-
to-end delay among the methods evaluated, with delays 
starting at 5.6% for 80 nodes and climbing to 7.5% for 150 
nodes. This indicates that spectral clustering is particularly 
inefficient in maintaining low latency under adverse 
conditions, such as with the presence of malicious nodes. 
Density-based clustering offers a moderate performance 
compared to K-means and Spectral Clustering, with end-
to-end delays ranging from 4.7% for 80 nodes to 6.8% for 
150 nodes. While it performs better than the latter two 
techniques, it still falls short of the TAC approach’s efficiency.

Table 9 depicts the average energy consumption (in 
Joules) obtained by the proposed TAC, K-means, spectral 
and density with 20% malicious nodes in the network. 

The table compares the average energy consumption 
(in Joules) among the proposed trust-aware clustering (TAC) 
approach and three existing clustering techniques, K-means, 
spectral, and density-based clustering, in the context of 10% 
malicious nodes. The results are presented for networks with 
varying sizes, ranging from 80 to 150 nodes.

The proposed TAC approach demonstrates the lowest 
average energy consumption, starting at 0.42 Joules for 
80 nodes and gradually increasing to 0.58 Joules for 150 
nodes. This indicates that the TAC approach is highly 
efficient in energy utilization, which is critical in wireless 
sensor networks where energy resources are limited. 
K-Means Clustering exhibits higher energy consumption, 
beginning at 0.62 Joules for 80 nodes and increasing to 
0.83 Joules for 150 nodes. This trend signifies that K-Means 
is less efficient in managing energy resources, resulting in 
higher energy usage as the number of nodes increases. 
Spectral clustering shows a similar pattern, with average 
energy consumption starting at 0.67 Joules for 80 nodes and 
rising to 0.88 Joules for 150 nodes. The energy consumption 
values indicate that Spectral Clustering is even less efficient 
than K-Means, leading to greater energy depletion in the 
network. Density-based clustering performs slightly better 
than Spectral Clustering but still consumes more energy 
than the Proposed TAC approach. The average energy 

Table 7: Packet delivery ratio (in %) obtained by the proposed TAC, 
K-means, spectral and density with 20% malicious Nodes

Number of 
nodes

Packet Delivery Ratio (in %)

Proposed TAC K-means Spectral Density

80 95.8 87.5 86.9 88.7

90 95.5 87.0 86.5 88.3

100 95.3 86.5 86.0 87.9

110 95.1 86.1 85.5 87.5

120 94.9 85.7 85.0 87.1

130 94.7 85.4 84.6 86.8

140 94.5 85.0 84.2 86.4

150 94.3 84.6 83.8 86.0

Table 8: End-to-end delay (in %) obtained by the proposed TAC, 
K-means, spectral and density with 20% malicious nodes

Number of 
nodes

End-to-end delay (in %)

Proposed TAC K-means Spectral Density

80 1.5 5.2 5.6 4.7

90 1.7 5.4 5.8 5.0

100 1.9 5.7 6.1 5.3

110 2.0 6.0 6.4 5.6

120 2.2 6.2 6.6 5.9

130 2.3 6.5 6.9 6.2

140 2.5 6.8 7.2 6.5

150 2.6 7.0 7.5 6.8
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Table 9: End-to-end delay (in %) obtained by the proposed TAC, 
K-means, spectral and density with 20% malicious nodes

Number of 
nodes

End-to-end delay (in %)

Proposed TAC K-means Spectral Density

80 1.5 5.2 5.6 4.7

90 1.7 5.4 5.8 5.0

100 1.9 5.7 6.1 5.3

110 2.0 6.0 6.4 5.6

120 2.2 6.2 6.6 5.9

130 2.3 6.5 6.9 6.2

140 2.5 6.8 7.2 6.5

150 2.6 7.0 7.5 6.8

Table 10: Throughput (in Mbps) obtained by the proposed TAC, 
K-means, spectral and density with 20% malicious Nodes

Number of 
Nodes

Throughput (in Mbps)

Proposed TAC K-Means Spectral Density

80 6.8 4.9 4.6 5.2

90 6.6 4.7 4.4 5.0

100 6.4 4.5 4.2 4.8

110 6.2 4.3 4.0 4.6

120 6.0 4.1 3.8 4.4

130 5.8 3.9 3.6 4.2

140 5.6 3.7 3.4 4.0

150 5.4 3.5 3.2 3.8

consumption ranges from 0.58 Joules for 80 nodes to 0.79 
Joules for 150 nodes, highlighting its moderate efficiency 
in comparison to TAC.

Table 10 depicts the throughput (in Mbps) obtained by 
the proposed TAC, K-means, spectral and density with 20% 
malicious nodes in the network. 

The table outlines the throughput (in Mbps) achieved 
by the proposed trust-aware clustering (TAC) approach 
compared to three existing clustering techniques: K-means, 
spectral, and density-based clustering under conditions 
where 20% of the nodes are malicious. The results are 
provided for networks ranging from 80 to 150 nodes.

Proposed TAC approach consistently achieves the 
highest throughput, beginning at 6.8 Mbps for 80 nodes 
and decreasing to 5.4 Mbps for 150 nodes. This suggests that 
the TAC approach effectively maintains data transmission 
rates even with a significant proportion of malicious nodes, 
indicating its robustness in handling network disturbances. 
K-means clustering demonstrates a significantly lower 
throughput, starting at 4.9 Mbps for 80 nodes and 
declining to 3.5 Mbps for 150 nodes. The substantial drop 
in throughput reflects the inefficiencies of K-means in 
mitigating the effects of malicious nodes, leading to reduced 
data delivery rates. Spectral Clustering records even lower 
throughput values, with results beginning at 4.6 Mbps for 

80 nodes and falling to 3.2 Mbps for 150 nodes. This decline 
highlights the method’s inability to sustain throughput 
levels in the face of challenges posed by malicious nodes. 
Density-based clustering shows moderate throughput 
performance, ranging from 5.2 Mbps for 80 nodes to 3.8 
Mbps for 150 nodes. While better than K-means and spectral 
clustering, it still does not match the effectiveness of the 
proposed TAC approach.

Conclusion
The proposed trust-aware clustering (TAC) approach has 
demonstrated significant advantages over traditional 
clustering techniques such as K-means, spectral, and 
density-based clustering in addressing the challenges posed 
by malicious nodes. Throughout the evaluation of various 
performance metrics, including packet loss, packet delivery 
ratio, end-to-end delay, average energy consumption, and 
throughput, the TAC approach consistently outperformed 
existing methods. The results indicate that TAC not only 
minimizes packet loss and energy consumption but 
also maximizes throughput and packet delivery, even in 
scenarios where a considerable proportion of nodes (20 and 
10%) are compromised. This highlights the effectiveness 
of the TAC approach in fostering a resilient and efficient 
WSN, capable of sustaining high levels of data integrity and 
network performance in the face of malicious interference.

The TAC approach enhances network security by 
integrating trust metrics into the clustering process, 
allowing for a more informed selection of reliable nodes 
for communication. This capability is crucial in WSNs, where 
resource constraints and energy efficiency are paramount. 
Furthermore, the proposed method’s adaptability to varying 
node densities and malicious node ratios demonstrates its 
robustness and applicability in diverse real-world scenarios.

The trust-aware clustering approach presents a 
promising solution for the detection and management 
of malicious nodes in WSNs. Its ability to improve overall 
network performance while ensuring security makes 
it a valuable contribution to the field. Future work may 
focus on further refining the TAC algorithm, exploring its 
integration with other security measures, and testing its 
effectiveness in more complex network topologies and 
dynamic environments.
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