Trust aware clustering approach for the detection of malicious nodes in the WSN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.21Keywords:
Wireless sensor networks, Clustering approach, Low-energy adaptive clustering hierarchy, Malicious node detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Wireless sensor networks (WSNs) are pivotal in a range of applications such as environmental monitoring, healthcare, and defense. However, their decentralized and resource-constrained nature makes them vulnerable to various security threats, particularly from malicious nodes that can disrupt the network’s functionality. To address this issue, this paper proposes a novel trust aware clustering (LEACH) approach integrated with an optimization-based technique for the detection of malicious nodes in WSNs. The proposed model leverages the low-energy adaptive clustering hierarchy (LEACH) protocol for efficient clustering and energy management while incorporating a trust-based mechanism to evaluate the behavior of nodes. Additionally, an optimization algorithm is employed to enhance the accuracy of malicious node detection and improve the overall network performance. The trust model dynamically updates based on node interactions, ensuring that compromised nodes are detected and isolated promptly. Simulation results demonstrate the efficacy of the proposed approach in terms of increased detection accuracy, reduced energy consumption, and prolonged network lifetime, making it a robust solution for securing WSNs against malicious attacks.Abstract
How to Cite
Downloads
Similar Articles
- Heikham G. Chanu, Sudha A. Raddi, Anita Dalal, Sangeeta N. Kharde, Shivani Tendulkar, Association between the socio-demographic variables of women admitted for delivery to a Tertiary Care Hospital and their maternal and neonatal outcome - A cross-sectional study , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Geeta S Desai, Santosh Hajare, Sangeeta Kharde, Prevalence of non-alcoholic steatohepatitis in a general population of North Karnataka , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Arenlila Jamir, Sangeeta Kharde, Anita Dalal, Health-seeking behavior of first-time mothers toward pregnancy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sadanand Maurya, Manikant Tripathi, Karunesh K. Tiwari, Awadhesh K. Shukla, Isolation and molecular characterization of microbial isolates from Saryu river water , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Muzaffar G. Khoshimov, Problems of general and typological theory of composite sentence with a parenthetical clause as an invariant type of syntactic unit , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Neeraj ., Anita Singhrova, Quantum Key Distribution-based Techniques in IoT , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper