Enhanced regression method for weather forecasting
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.18Keywords:
Weather forecasting, Light gradient boosting machine, Regression, Differential evolution.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Weather prediction is gaining popularity very rapidly in the current era of artificial intelligence and Technologies. It is essential to predict the temperature of the weather for some time. Traditionally, weather predictions are performed with the help of large complex models of physics, which utilize different atmospheric conditions over a long period of time. These conditions are often unstable because of perturbations of the weather system, causing the models to provide inaccurate forecasts. The models are generally run on hundreds of nodes in a large high-performance computing (HPC) environment, which consumes a large amount of energy. In this paper, LightGBM Regression parameters are tuned by using an optimization technique. Differential evolution (DE) is used to optimize the LightGBM regressor for estimating and forecasting the weather in the fore coming days.Abstract
How to Cite
Downloads
Similar Articles
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V.Samuthira Pandi, B. R. Senthil kumar, M Anusuya, Annu Dagar, Synthesis and characterization of ZnO, ZnO doped Ag2O nanoparticles and its photocatalytic activity , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Y. Aboobucker Parvez, Prasanth Ponnusamy, S Santhosh , Rakhi Kamra, Synthesis and structural feasibility of photonic materials , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Appu, How does brand equity influence the intent of e-bike users? Evidence from Chennai city , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nupur Dogra, Shaveta Sharma, Impact of social networking sites on adolescent alienation and depression with special reference to Facebook usage , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Vnuchko, O. Batrymenko, О. Ткach, М. Karashchuk, M. Volkivskyi, Models of interaction between business and government in the conditions of the European integration course of Ukraine , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.