Enhanced regression method for weather forecasting
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.18Keywords:
Weather forecasting, Light gradient boosting machine, Regression, Differential evolution.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Weather prediction is gaining popularity very rapidly in the current era of artificial intelligence and Technologies. It is essential to predict the temperature of the weather for some time. Traditionally, weather predictions are performed with the help of large complex models of physics, which utilize different atmospheric conditions over a long period of time. These conditions are often unstable because of perturbations of the weather system, causing the models to provide inaccurate forecasts. The models are generally run on hundreds of nodes in a large high-performance computing (HPC) environment, which consumes a large amount of energy. In this paper, LightGBM Regression parameters are tuned by using an optimization technique. Differential evolution (DE) is used to optimize the LightGBM regressor for estimating and forecasting the weather in the fore coming days.Abstract
How to Cite
Downloads
Similar Articles
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anurag Tripathi, Histoenzymological Distribution of Acetylcholinesterase in the Rostral Mesencephalic Torus Semicircularis and Tegmental Nuclei of an Indian air Breathing Teleost Heteropneustes fossilis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Ruchi Sharma, Anju Panwar, Yougesh Kumar, Further Observations on Contracaecum aori, Khan and Yaseen (1969) Recovered from the intestine of Channa punctatus in India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anuj Kumar, R C Vishwakarma, K Sunita, Exploring Novel Panorama Within Plant-microbe Interface , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Belgundkar Babita, Kharde Sangeeta, Dodamani Suneel, Socio-demographic and reproductive determinants of spontaneous abortion- A cross-sectional comparative research at a tertiary care hospital in North Karnataka, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ramya Singh, Archana Sharma, Nimit Gupta, Nursing on the edge: An empirical exploration of gig workers in healthcare and the unseen impacts on the nursing profession , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. R. R. Prakash, Kishore Kunal, Designing information systems for business administration through human and computer interaction , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Parul Yadav, Priyanka Suryavanshi, Storage study on compositional analysis of quinoa and ragi based snacks , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.