Enhanced regression method for weather forecasting
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.18Keywords:
Weather forecasting, Light gradient boosting machine, Regression, Differential evolution.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Weather prediction is gaining popularity very rapidly in the current era of artificial intelligence and Technologies. It is essential to predict the temperature of the weather for some time. Traditionally, weather predictions are performed with the help of large complex models of physics, which utilize different atmospheric conditions over a long period of time. These conditions are often unstable because of perturbations of the weather system, causing the models to provide inaccurate forecasts. The models are generally run on hundreds of nodes in a large high-performance computing (HPC) environment, which consumes a large amount of energy. In this paper, LightGBM Regression parameters are tuned by using an optimization technique. Differential evolution (DE) is used to optimize the LightGBM regressor for estimating and forecasting the weather in the fore coming days.Abstract
How to Cite
Downloads
Similar Articles
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Siddharth P. Singh, Amar B. Verma, Ankur Srivastava, Kamlesh K. Chaurasiya, Anil Kumar, Prashant K. Singh, Sindhu Singh, Design Design, structural, and electrical conduction behavior of Zr-modified BaTiO3-BiFeO3 perovskite ceramics , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shahala Sheikh, Lalsingh Khalsa, Nitin Chandel, Vinod Varghese, Hygrothermoelastic large deflection behaviour in a thin circular plate with non-Fourier and non-Fick law , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Aditi Malik, Rishi Chaudhry, Mohit, Urvashi Suryavanshi, Mapping the landscape of political advertising research: A comprehensive bibliometric analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- J. B. BHEDA, Comparative study of classical oratory traditions in East and West , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Jasleen Kaur, Sultan Singh, Assessing the Impact of Stress on the Health and Job Performance of Employees in Indian Banks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.