A novel approach for metrics-based software defect prediction using genetic algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.39Keywords:
Rule mining, Defect, Genetic, software metrics, Prediction.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Software defect prediction is an important issue in the process of software development and maintenance, which is related to the overall success or failure of software. This is because early software failure prediction can improve software quality, reliability and efficiency, and reduce software cost. However, developing robust defect prediction models is a challenging task and many techniques have been proposed in the literature. In this paper, a software defect prediction model based on Novel Hybrid Genetics Software Defect Prediction (NHGSDP) is proposed. The supervised NHGSDP algorithm has been used to predict future software failures based on historical data. The evaluation process shows that the NHGSDP algorithm can be used effectively with high accuracy. The collected results show that the NHGSDP method has better performance.Abstract
How to Cite
Downloads
Similar Articles
- Maya Kumari, Vikas Y Patade, Z Ahmad, TRANSGENIC APPROACH TOWARDS DEVELOPMENT OF COLD STRESS TOLERANT VEGETABLES FOR HIGH ALTITUDE AREAS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, INVOLVEMENT OF PLANT MICRORNAS IN ABIOTIC STRESS RESPONSES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper