
Abstract
Software defect prediction is an important issue in the process of software development and maintenance, which is related to the overall
success or failure of software. This is because early software failure prediction can improve software quality, reliability and efficiency,
and reduce software cost. However, developing robust defect prediction models is a challenging task and many techniques have been
proposed in the literature. In this paper, a software defect prediction model based on novel hybrid genetics software defect prediction
(NHGSDP) is proposed. The supervised NHGSDP algorithm has been used to predict future software failures based on historical data.
The evaluation process shows that the NHGSDP algorithm can be used effectively with high accuracy. The collected results show that
the NHGSDP method has better performance.
Keywords: Rule mining, Defect, Genetic, Software metrics, Prediction.

A novel approach for metrics-based software defect prediction
using genetic algorithm
Rajeev P. R.*, K. Aravinthan

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 12/07/2024				 Accepted: 14/08/2024			 Published : 16/09/2024

PG & Research Department of Computer Science, Adaikalamatha
College, Affiliated to Bharathidasan University, Vallam, Thanjavur,
Tamilnadu, India.
*Corresponding Author: Rajeev P. R., PG & Research Department
of Computer Science, Adaikalamatha College, Affiliated to
Bharathidasan University, Vallam, Thanjavur, Tamilnadu, India.,
E-Mail: prrajeev1904@gmail.com
How to cite this article: Rajeev, P. R., Aravinthan, K. (2024). A
novel approach for metrics-based software defect prediction
using genetic algorithm. The Scientific Temper, 15(3):2709-2718.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.39
Source of support: Nil

Conflict of interest: None.

Introduction
Software testing can be defined as “the process of analyzing
a software item to detect differences between existing and
required conditions and to evaluate the characteristics of
the software item” (Nalini, C and T, Murali Krishna, 2020).
The purpose of this test is “to provide information about
the quality of the test items in the non-functional and
functional requirements” (Perera and Anjana, 2020). On the
other hand, software quality can be defined as “the degree
to which software has a desired combination of attributes.”
Human error leads to product defects, which may behave
unexpectedly or produce unexpected or incorrect results
(Harki et al., 2020). The fundamental principle of testing is
to provide information about software quality, usability
failures, and defect discovery before completion (Perera

The Scientific Temper (2024) Vol. 15 (3): 2709-2718	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.39	 https://scientifictemper.com/

and Anjana, 2020). These tests also contribute to a better
understanding of systems, especially complex systems,
making them an integral part of software engineering (Kaur
et al., 2020).

Clustering is an unsupervised data mining technique
where the class labels are unknown. In grouping methods,
data items are grouped based on their similarity to other
data items. Clustering is the process of grouping data so
that similar data items are placed in the same cluster. Fuzzy
clustering is a clustering algorithm for predicting software
defects. In this technique, defective data items are moved
between groups until the most suitable group is found.
This method is used to predict failures in program modules.
Association mining is a data mining method for identifying
frequently occurring sets of data items. It is a method for
finding correlations between elements in a dataset (Supriya,
M., and A. J. Deepa, 2020).

For a long time, testing has emphasized the failure or
defect of the system under different conditions. The main
problem is that test managers slow down the development
process and lead to limited final testing before the software
is complete. Another problem is the lack of testing, and
the testing environment and human testing or testing
tools are very dependent. Test environments are generally
not dependent on precise configuration during software
development. The absence of such a problem in testing
is that software testing teams, instead of looking at the
functionality of the system, have an attitude that limits
the software bugs they find (Sikka, Geeta and Renu Dhir,

2710	 Rajeev and Aravinthan	 The Scientific Temper. Vol. 15, No. 3

2020). Furthermore, the testes ignore the lessons learned
from the trials because the team leader failed to document
errors and solutions. This caused the error to be repeated
in previous projects.

Objective
The objectives of this research are detailed below:
•	 Create new datasets based on metrics extracted from

source code.
•	 Create a rule to predict the best fault detection.
•	 Create novel algorithms to predict software defects.
•	 Use efficient classification algorithms to better predict

software defects.
•	 Use effective indicators and methods to evaluate results.
•	 Suggest a low-cost software development process.
•	 Reduce the time and effort of fault tracking.

Scope
•	 Finding defects to help improve the level of quality.
•	 Reducing the risk of failures occurring during operation

and gain confidence about the level of quality.
•	 Improve management decisions by providing

information for decision making.
•	 Prevent defects by gaining insight into system behavior

to identify processes in the organization that need
improvement.

•	 Implement suggested techniques in software systems
for the classification and automatic detection of
software defects.

Literature Review
There are many studies on using machine learning
techniques to predict software errors. For example, the study
in (Perera and Anjana, 2020) proposes a linear autoregressive
(AR) method to predict defective modules. This study
predicts future software failures based on historical data
of accumulated software failures. The study also evaluated
and compared the AR model and the power known model
(POWM) using root mean square error (RMSE) measurements.
Furthermore, the study used three datasets for evaluation
and the results are promising. (Harki et al., 2020) studied the
applicability of various ML methods to predict failures.

Add to their study the most important previous research
on each ML technique and current trends in using machine
learning to predict software errors. This research can serve
as a basis or step in preparing for future work in predicting
software errors (Harki et al., 2020).

A good systematic evaluation of software error prediction
techniques using machine learning (ML) by Supriya, M., and
A, J, Deepa., in 2020. This document reviews all research
from 2000 to 2022, discusses ML techniques for software
error prediction models, and evaluates their performance.
Different ML techniques summarizes the pros and cons of
ML techniques compared to statistical and ML techniques. Figure 1: Software defect prediction Architecture

This document provides a benchmark that allows a general
and useful comparison between different error prediction
methods. The study presents a complete comparison of
known error prediction methods and introduces a new
method to evaluate its performance with good comparisons
with other methods (Sikka et al., 2020).

Methodology
The proposed method predicts software defects using
predetermined patterns and analyzes by building a new
database of software metrics and ends with software defects
(Figure 1). This chapter details the methods, datasets, and
techniques used to identify software defects.

Noise Reduction
The first step in preprocessing is preliminary filtering. This
step removes some of the existing noise in the iterations to
reduce its impact on subsequent steps. More specifically,
noisy instances identified with high confidence are removed
in this step. This filtering is followed by silent filtering. The
new filter contains partially clean data from the previous step
and is applied to the training samples to produce a clean
and noisy set. The last step is to remove the noise from the
noise score (Pandey et al., 2020).

Figure 2 illustrates the preprocessing steps involved in
enhancing the quality of software data. Initially, preliminary
filtering eliminates noisy instances, followed by silent
filtering to remove partially clean data and apply the filter to
training samples, mitigating noise impact. Feature reduction
identifies and removes attributes with constant values,
reducing redundancy in datasets. Missing value reduction
employs the RandomForest algorithm to interpolate missing
data accurately. Redundant reduction identifies redundant
features and performs feature sub-selection to eliminate
irrelevant attributes. Each step contributes to refining the

	 A novel approach for metrics-based software defect prediction using genetic algorithm	 2711

Redundant Reduction
In this approach, the number of studies using eigensubselection
techniques and widely used eigensubselection techniques
are identified. It is important to perform feature sub-selection
on the input data before feeding it to the learning algorithm,
as the data may contain redundant and irrelevant features.
Of the 22 features selected for this system mapping, 16 were
studied using the feature subselection method, i.e., exactly
50% of the studies used the feature subselection method
(Liang et al., 2020).pr

Rule Mining
Rule mining is a classification method aimed at accurately
measuring and predicting defects. Before creating a failure
prediction model, determine the learning scenarios for
building the model. The dataset is divided into two parts,
and the identifiers are learned on 60% of the data in the
dataset. Knowledge is implicit in a set of rules. Rule mining
consists of two nested loops. The outer loop selects values
from classes, while the inner loop creates rules that apply to
classes and returns the best combination of classes (Kwak
et al., 2020). Define simple rules for each metric based on
suggested intervals. These rules fire if a module’s metrics
are not within the specified interval (meaning the module
was manually verified). It shows 12 base rules with their
corresponding flags and 2 derived rules. The first derivative
rule, rule 13, defines the separation of the 12 basic rules. If
you trigger some of the basic rules, that’s Rule 13 triggering.
Figure 3 portrays the architecture of the rule mining process,
delineating the sequential steps involved in extracting rules
from a dataset (Figure 4). Initially, the dataset undergoes
division into two parts, with 60% allocated for learning
scenarios and the remaining 40% for evaluation. The process
then enters nested loops, with the outer loop selecting
values from classes, while the inner loop iterates through
these values to create rules specific to each class. These rules
are formulated based on the dataset’s characteristics and are
designed to accurately predict software defects. Once the
loops conclude, a comprehensive set of rules is generated,
encapsulating the knowledge extracted from the dataset.
This visual representation offers insight into the systematic
approach employed in rule mining, highlighting the iterative
nature of the process and the structured methodology
behind rule creation from the dataset.

Clustering Techniques
Clustering techniques group the training data such that
the similarity within a group is greater than the similarity
between all groups. Clustering techniques use distance and
similarity measures to find similarities between two objects
in order to group them. In this work, he studies K-means
technique and c-means for fuzzy clustering. K-means divides
the data into k groups and iteratively randomly selects
centroids. The value of k affects the performance of the Figure 2: Preprocessing steps

dataset, ensuring its suitability for subsequent analysis and
classification tasks, thereby enhancing the effectiveness of
software defect prediction models through improved data
quality and relevance.

Feature Reduction
A property that has a constant/fixed value in all cases is easily
identifiable because it becomes zero. These attributes do not
have any information to distinguish the modules and are, at
best, a waste of classification resources. This work reduces
redundant attributes in datasets/metrics databases. Some
attributes are repeated and reduced again. Both attributes
of each instance have the same value, resulting in over-
representation of a single attribute (Sharma et al., 2020)

Missing Value Reduction
With the increasing amount of data and the emergence
of data, the problem of missing data is still common in
statistical problems and requires specific methods. Given our
approach to reducing such large amounts of data, this paper
proposes the application of the random forest algorithm
(Sharma et al., 2020), an interpolation algorithm for missing
data in mixed datasets. The purpose of the algorithm is to
accurately predict individual loss values rather than draw
distributions randomly so that estimates can bias the results.
The parameters of the statistical model are mimicked.

2712	 Rajeev and Aravinthan	 The Scientific Temper. Vol. 15, No. 3

technique (Pandit et al., 2020). We tried four different values
of k, (i.e., 2, 3, 4, and 5) and found that k = 2 tended to work
best. We also investigated the fuzzy C-means technique
(Harzevili et al., 2021) (FCM), which automatically divides a
dataset into an optimal (approximate) number of groups
(Ksiazek et al., 2021).

Experimental Results

Improved Database of Software Metrics (IDBSM)
The software metrics dataset proposed by IDBSM considers
several real-time software metrics in its collection. The
collected metrics are then passed through a series of steps
in which LOC, McCabes, and Halstead techniques are applied
to create a database. The metrics considered are based on
completed software projects to support the benchmarking
business. NASA IV&V Metrics Data Program - Software
datasets provided by the Metrics data repository (MDP)
are used in most experiments in software engineering and
related fields. Data warehouses contain software metrics as
attributes of datasets and also indicate whether a particular
dataset is flawed or not. All data contained in the repository
is collected and verified by the metrics data program. All
software flags are listed in Table 1.

IDBSM extracted a total of 22 attributes as it contained
5 different lines of code, 3 McCabe metrics, 4 Halstead base

metrics, 8 Halstead derived metrics, 1 branch count, and 1
output field (Figure 4).

Enhanced Data Preprocessing Technique (EDPT)
The IDBSM database was used as input for EDPT. EDPT
removes all files not included in the metrics extraction, i.e.,
readme files, test scripts and help files. Additionally, 0.2%
of “commit ID - filename” records (9 out of 4623 unique
tuples) related to source code files were also removed
(Figure 5). These records are outliers, and in extreme cases,
source files are moved or deleted. More specifically, version

Figure 3: Architecture of the rule mining process

Figure 4: Dataset metric extraction

Table 1: Software metrics and its definition

Attribute name Description

Loc McCabe’s line count of code

v(g) McCabe «cyclomatic complexity»

ev(g) McCabe «essential complexity»

iv(g) McCabe «design complexity»

n Halstead total operators + operands

v Halstead «volume»

l Halstead «program length»

D Halstead «difficulty

i Halstead «intelligence»

e Halstead «effort»

b Halstead

T Halstead’s time estimator

lOCode Halstead’s line count

lOComment Halstead’s count of lines of comments

lOBlank Halstead’s count of blank lines

lOCodeAnd Comment Numeric

uniq_Op unique operators

uniq_Opnd unique operands

total_Op total operators

total_Opnd total operands

Branch_count Total flow graphs

	 A novel approach for metrics-based software defect prediction using genetic algorithm	 2713

Figure 5: Record reduction Figure 6: Attribute reduction

control systems recognize directory changes/refactorings as
complete deletions of files by default. Every time a file moves
up or down one or more levels in the directory structure,
an unusual number of lines are added or removed. In some
cases, including large files, more than 10,000 lines were
added or removed from the commit. Earlier cleaning results
in more accurate model creation. Figure 6 shows a simplified
EDPT log of the dataset.

Novel Hybrid Genetic Based Software Defect Prediction
(NHGSDP)
In the current work, Software Metric 21 is McCabe and
Halstead’s metric, measured using objective metrics. Using
Matlab tools, the dataset was applied to the Naive Bayesian
classifier and the proposed algorithm. This dataset is based
on a combination of structural and object-oriented. Most of
the source code is written in C and C++. The study compared
mean precision (values from 0 to 1), true positive rate,
false positive rate, sensitivity, and specificity. Accuracy is
calculated from the number of correctly classified instances.
Based on the results of these analyses, the method is
applicable to large datasets. The table below uses different
classifiers to accurately classify and classify instances using
the total number of instances in the dataset. It also highlights
based on sensitivity and specificity values to provide the
best classifier. Table 2 lists the weight analysis of the NHGSDP
in the extracted features, while Table 3 lists the weighting
factors table for the NHGSDP.

Table 2 presents the rules and their associated weights
used in the novel hybrid genetic-based software defect
prediction (NHGSDP) model. Each rule, identified by

a unique ID, corresponds to a specific software metric
condition such as lines of code (LOC), McCabe’s complexity
(V(G), ev(G), iv(G)), Halstead’s metrics (V, l, D, i, e, b, T, lOCode,
lOComment, lOBlank, lOCodeAndComment, uniq_Op,
uniq_Opnd, total_Op, total_Opnd), and branch count. The
weight assigned to each rule determines its influence in
predicting software defects, with higher weights indicating
greater significance in defect prediction. For instance,
rules related to higher values of metrics like LOC, V(G), V,
e, t, and branch count carry heavier weights (4), signifying
their stronger predictive power, while lower weights (0) are
assigned to rules representing lower metric values, implying
less impact on defect prediction. This Table 2 provides a

Figure 7: Weight distribution of rules in NHGSDP model

2714	 Rajeev and Aravinthan	 The Scientific Temper. Vol. 15, No. 3

structured representation of the rules and their weights,
offering insights into the prioritization and significance of
different software metrics in defect prediction within the
NHGSDP model.

Figure 7 illustrates the proportional distribution of
weights assigned to different rules within the novel hybrid
genetic-based software defect prediction (NHGSDP) model.
Each segment of the pie represents a specific rule, while the
size of the segment corresponds to the weight assigned
to that rule. The chart provides a clear visualization of the
relative importance of each rule in the defect prediction
process. For instance, larger segments indicate rules with
higher weights, suggesting their significant impact on the
prediction outcome. Conversely, smaller segments represent
rules with lower weights, implying their comparatively
lesser influence. This visualization aids in understanding
the relative contribution of individual rules toward software
defect prediction, enabling stakeholders to prioritize
efforts and resources accordingly for more effective defect
detection and mitigation strategies.

Rule Prediction
Any attribute with a weight > 2.5 receives a prediction factor
of 1, otherwise NHGSDP is zero. Table 3 lists the predictions
for the NHGSDP rules, while Table 4 lists the difference tables.

According to the established survey and analysis of
NASA’s MDP data, the difference in mean values is > 0.407,
which is described as a “software defect” in NHGSDP. Table 5
lists the prediction table NHGSDP.

Performance Measures
Performance measures of NHGSDP are detailed below, along
with NHGSDP classification results in Table 6 and Figures 8, 9.

True Positive	 =	 a	 =4
False Negative = 	 b	 =0
False Positive	=	 c	 =13
True Negative	 =	 d	 =1
Accuracy = acc = (a+d)/(a+b+c+d) = (4+1)/(4+0+13+1)

= 5/18 = 99.72
probability of detection = pd = recall = d/(b+d) = 1 /

(0+1) = 1
probability of false alarm = pf = c/(a+c) = 13/17 = 0.765
precision = prec = d/(c+d) = 1/14 = 0.0714
effort= amount of code selected by detector = (c.LOC +

d.LOC)/(Total LOC) = 1174 /1262.1 = 0.9302	
Table 6 presents the classification results of the NHGSDP

method across various software engineering datasets. Each
row corresponds to a specific method, such as CM1, JM1,
KC1, and so on, while the columns display the sensitivity,
specificity, and accuracy values for each method. Sensitivity
reflects the proportion of true positive predictions, specificity
indicates the proportion of true negative predictions, and
accuracy denotes the overall correctness of the classification.
The Table 6 provides a comparative view of the performance

Table 2: Weighted factor table

Rule ID Rule Weight

1 If LOC > 150 4

Else if LOC > 101 && LOC <= 150 3

Else if LOC > 51 && LOC <= 100 2

Else if LOC > 25 && LOC <= 50 1

Else if LOC <= 25 0

2 If V(G) > 10 4

Else if V(G) > 7 && V(G) <= 10 3

Else if V(G) > 5 && V(G) <= 7 2

Else if V(G) > 2 && V(G) <= 5 1

Else if V(G) <= 2 0

3 If ev(G) > 5 2

Else if ev(G) > 2 && ev(G) <= 5 1

Else if ev(G) <= 2 0

4 If iv(G) > 10 4

Else if iv(G) > 7 && iv(G) <= 10 3

Else if iv(G) > 5 && iv(G) <= 7 2

Else if iv(G) > 2 && iv(G) <= 5 1

Else if iv(G) <= 2 0

5 If V > 350 2

Else if V > 100 && V <= 350 1

Else if V <= 100 0

6 If l > 0.1 1

7 If d > 10 2

Else if d > 5 && d <= 10 1

Else if d <= 5 0

8 If i > 50 2

Else if i > 20 && i <= 50 1

Else if i <= 20 0

9 If e > 5000 4

Else if e > 3000 && e <= 5000 3

Else if e <= 500 0

10 If t > 500 4

Else if t > 300 && t <= 500 3

Else if t > 150 && t <= 300 2

Else if t > 50 && t <= 150 1

Else if t <= 50 0

11 If IOBlank > 50 1

12 If Uniq_Opr > 15 1

13 If Uniq_Oprnd > 35 1

14 If Branch Count > 35 4

Else if Branch Count > 25 && Branch Count <= 35 3

Else if Branch Count > 15 && Branch Count <= 25 2

Else if Branch Count > 8 && Branch Count <= 15 1

Else if Branch Count <= 8 0

	 A novel approach for metrics-based software defect prediction using genetic algorithm	 2715

Table 3: Rule prediction

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R3 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R4 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R5 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R6 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R7 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R17 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

R18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

R1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

R3 4 4 2 4 4 0 2 2 4 4 0 1 1 1 4

R4 4 4 2 4 4 0 2 2 4 4 1 0 1 1 4

R5 4 4 2 4 4 0 2 2 4 4 1 0 1 1 4

R6 4 4 2 4 4 0 2 2 4 4 1 0 1 1 4

R7 4 4 2 4 4 0 2 2 4 4 1 0 1 1 3

R8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

R9 0 1 0 1 1 1 1 0 1 2 0 0 0 0 0

R10 0 1 0 1 1 1 1 0 1 2 0 0 0 0 0

R11 0 0 0 0 0 1 2 0 1 1 0 0 0 0 0

R12 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

R13 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0

R14 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

R15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

R17 1 2 0 1 4 0 2 1 0 3 0 0 1 1 1

R18 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

of different methods, showing their varying levels of
effectiveness in classifying software defects. For instance,
methods like MC1 and PC2 demonstrate high sensitivity
and specificity, resulting in high accuracy rates, while others
like JM1 show lower performance across these metrics. This

Table 6 is crucial for evaluating the efficacy of the NHGSDP
method and determining its suitability for defect prediction
tasks in software engineering.

Figure 8 provides a comprehensive overview of the
performance metrics of different methods within the

2716	 Rajeev and Aravinthan	 The Scientific Temper. Vol. 15, No. 3

Table 4: Rule prediction differentiation table

Rule Mean difference (Sum(Attr_
PrWeight)/15)

R1 0

R2 0

R3 0.466667

R4 0.466667

R5 0.466667

R6 0.466667

R7 0.466667

R8 0

R9 0

R10 0

R11 0

R12 0

R13 0

R14 0

R15 0

R16 0

R17 0.133333

R18 0

Table 5: Prediction table

Rule Mean difference
(Sum(Attr_PrWeight)/15)

Prediction
result Actual result

R1 0 No defect No defect

R2 0 No defect No defect

R3 0.466667 Defect Defect

R4 0.466667 Defect Defect

R5 0.466667 Defect Defect

R6 0.466667 Defect Defect

R7 0.466667 Defect Defect

R8 0 No defect No defect

R9 0 No defect No defect

R10 0 No defect No defect

R11 0 No defect No defect

R12 0 No defect No defect

R13 0 No defect No defect

R14 0 No defect No defect

R15 0 No defect No defect

R16 0.133333 No defect Defect

R17 0 No defect No defect

Table 6: NHGSDP classification results

Methods Sensitivity Specificity Accuracy

CM1 0.483 0.986 89.13

JM1 0.198 0.956 83.04

KC1 0.450 0.983 87.91

KC3 0.412 0.922 84.8

MC1 0.693 1 99.34

MC2 0.591 1 69.23

MW1 0.429 0.978 89.14

PC1 0.51 0.999 89.62

PC2 0 1 99.37

PC3 0.986 0.966 84.02

PC4 0.577 0.928 92.27

PC5 0.491 0.990 97.28

Figure 8: Comparison of sensitivity and specificity across NHGSDP
methods

Figure 9: NHGSDP accuracy comparison across different methods

NHGSDP dataset. Each method is represented by a pair of
bars, with the first bar segment indicating sensitivity and
the second segment indicating specificity. The chart reveals
significant variations in the performance of the methods,

	 A novel approach for metrics-based software defect prediction using genetic algorithm	 2717

with some achieving high sensitivity but lower specificity
and vice versa. For instance, Method MC1 demonstrates the
highest sensitivity of all methods, while Method PC2 exhibits
perfect specificity. This visualization aids in identifying
trade-offs between sensitivity and specificity and allows
researchers to assess the overall effectiveness of each
method in accurately predicting software defects within
the NHGSDP dataset.

Figure 9 provides a visual representation of the accuracy
performance across various methods used in novel hybrid
genetic based software defect prediction (NHGSDP). Each
bar in the chart corresponds to a specific method, and the
height of the bar indicates the accuracy achieved by that
method. By comparing the heights of the bars, it’s evident
that some methods outperform others in terms of accuracy.
This comparison helps in identifying the most effective
methods for software defect prediction within the NHGSDP
framework. Additionally, the visual depiction simplifies the
understanding of which methods offer higher accuracy
rates, aiding in decision-making processes regarding the
selection of prediction methods for software development
projects.

Conclusion
Software defect prediction is a technique for creating
predictive models to predict future software failures based
on historical data. Various methods have been proposed
using different datasets, different software metrics, and
different performance metrics. This paper evaluates the
proposed algorithm for use in the problem of software
defect prediction. Three machine learning techniques were
used, namely IDBSM, EDPT and NHGSDP. The evaluation
process is implemented using real test/debug datasets.
Experimental results are compiled in terms of precision,
sensitivity, and specificity. The results show that the
NHGSDP technique is an effective method for predicting
future software defects. Furthermore, experimental results
show that using the NHGSDP method provides better
performance for predictive models than other methods.

References
Aarti, Sikka, G., & Dhir, R. (2020). Novel grey relational feature

extraction algorithm for software fault-proneness using
BBO (B-GRA). Arabian Journal for Science and Engineering,
45, 2645-2662.

Arun, C., & Lakshmi, C. (2022). Genetic algorithm-based
oversampling approach to prune the class imbalance issue
in software defect prediction. Soft Computing, 26(23), 12915-
12931.

Aziz, S. R., Khan, T. A., & Nadeem, A. (2021). Exclusive use and
evaluation of inheritance metrics viability in software fault
prediction—an experimental study. PeerJ Computer Science,
7, e563.

Bao, H., & Zhu, H. (2022). Modeling and trajectory tracking model
predictive control novel method of AUV based on CFD data.
Sensors, 22(11), 4234.

Batool, I., & Khan, T. A. (2022). Software fault prediction using data
mining, machine learning and deep learning techniques:
A systematic literature review. Computers and Electrical
Engineering, 100, 107886.

Belhocine, A., Shinde, D., & Patil, R. (2021). Thermo-mechanical
coupled analysis based design of ventilated brake disc using
genetic algorithm and particle swarm optimization. JMST
Advances, 3, 41-54.

Boughida, A., Kouahla, M. N., & Lafifi, Y. (2022). A novel approach
for facial expression recognition based on Gabor filters and
genetic algorithm. Evolving Systems, 13(2), 331-345.

Breda, J. F. D., Vieira, J. C. M., & Oleskovicz, M. (2021). Power quality
monitor allocation based on singular value decomposition
and genetic algorithm. Journal of Control, Automation and
Electrical Systems, 32(1), 175-185.

Castillo, O., & Melin, P. (2021, February). A novel method for a COVID-
19 classification of countries based on an intelligent fuzzy
fractal approach. In Healthcare (Vol. 9, No. 2, p. 196). MDPI.

Conroy-Beam, D. (2021). Couple simulation: A novel approach for
evaluating models of human mate choice. Personality and
Social Psychology Review, 25(3), 191-228.

Fathima, K., & Vimina, E. R. (2022). Heart disease prediction using
deep neural networks: A novel approach. In Intelligent
Sustainable Systems: Proceedings of ICISS 2021 (pp. 725-736).
Springer Singapore.

Goyal, S., & Bhatia, P. K. (2021). Software fault prediction using lion
optimization algorithm. International Journal of Information
Technology, 13, 2185-2190.

Harki, N., Ahmed, A., & Haji, L. (2020). CPU scheduling techniques:
A review on novel approaches strategy and performance
assessment. Journal of Applied Science and Technology Trends,
1(1), 48-55.

Harzevili, N. S., & Alizadeh, S. H. (2021). Analysis and modeling
conditional mutual dependency of metrics in software
defect prediction using latent variables. Neurocomputing,
460, 309-330.

Jin, C. (2021). Cross-project software defect prediction based on
domain adaptation learning and optimization. Expert Systems
with Applications, 171, 114637.

Jin, C. (2021). Software defect prediction model based on distance
metric learning. Soft Computing, 25(1), 447-461.

Kaur, A., Jain, S., & Goel, S. (2020). Sandpiper optimization
algorithm: a novel approach for solving real-life engineering
problems. Applied Intelligence, 50(2), 582-619.

Khan, S. D., Alarabi, L., & Basalamah, S. (2020). Toward smart
lockdown: a novel approach for COVID-19 hotspots
prediction using a deep hybrid neural network. Computers,
9(4), 99.

Khurana, A., & Verma, O. P. (2020). Novel approach with nature-
inspired and ensemble techniques for optimal text
classification. Multimedia Tools and Applications, 79(33),
23821-23848.

Książek, W., Gandor, M., & Pławiak, P. (2021). Comparison of
various approaches to combine logistic regression with
genetic algorithms in survival prediction of hepatocellular
carcinoma. Computers in Biology and Medicine, 134, 104431.

Kumar, S., Jakkareddy, P. S., & Balaji, C. (2020). A novel method to
detect hot spots and estimate strengths of discrete heat
sources using liquid crystal thermography. International
Journal of Thermal Sciences, 154, 106377.

2718	 Rajeev and Aravinthan	 The Scientific Temper. Vol. 15, No. 3

Kwak, D. H., & Lee, S. H. (2020). A novel method for estimating
monocular depth using cycle gan and segmentation. Sensors,
20(9), 2567.

Liang, X., Teng, F., & Sun, Y. (2020). Multiple group decision making
for selecting emergency alternatives: a novel method based
on the LDWPA operator and LD-MABAC. International Journal
of Environmental Research and Public Health, 17(8), 2945.

Nalini, C., & Krishna, T. M. (2020, July). An efficient software defect
prediction model using neuro evalution algorithm based on
genetic algorithm. In 2020 Second International Conference
on Inventive Research in Computing Applications (ICIRCA) (pp.
135-138). IEEE.

Nevendra, M., & Singh, P. (2021). Software defect prediction using
deep learning. Acta Polytechnica Hungarica, 18(10), 173-189.

Padhy, N., Panigrahi, R., & Neeraja, K. (2021). Threshold estimation
from software metrics by using evolutionary techniques and
its proposed algorithms, models. Evolutionary intelligence,
14(2), 315-329.

Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020). BPDET: An
effective software bug prediction model using deep
representation and ensemble learning techniques. Expert
Systems with Applications, 144, 113085.

Pandit, M., & Gupta, D. (2021). Performance of genetic programming-
based software defect prediction models. International
Journal of Performability Engineering, 17(9), 787.

PATİL, V., & Ingle, D. R. (2022). A novel approach for ABO blood
group prediction using fingerprint through optimized
convolutional neural network. International Journal of
Intelligent Systems and Applications in Engineering, 10(1),
60-68.

Perera, A. (2020, December). Using defect prediction to improve the
bug detection capability of search-based software testing. In
Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering (pp. 1170-1174).

Sáez, J. A., & Corchado, E. (2022). ANCES: A novel method to repair

attribute noise in classification problems. Pattern Recognition,
121, 108198.

Shahid, A. H., & Singh, M. P. (2020). A novel approach for coronary
artery disease diagnosis using hybrid particle swarm
optimization based emotional neural network. Biocybernetics
and Biomedical Engineering, 40(4), 1568-1585.

Sharma, D., & Chandra, P. (2020). Towards recent developments
in the methods, metrics and datasets of software fault
prediction. International Journal of Computational Systems
Engineering, 6(1), 14-45.

Shaukat, K., Luo, S., & Varadharajan, V. (2022). A novel method
for improving the robustness of deep learning-based
malware detectors against adversarial attacks. Engineering
Applications of Artificial Intelligence, 116, 105461.

Singh, M. R. O., & Thankachan, B. (2021, February). A Detailed
Survey on Machine Intelligence Based Frameworks for
Software Defect Prediction. In 2021 International Conference
on Computing, Communication, and Intelligent Systems (ICCCIS)
(pp. 360-365). IEEE.

Supriya, M., & Deepa, A. J. (2020). A novel approach for breast
cancer prediction using optimized ANN classifier based
on big data environment. Health care management science,
23(3), 414-426.

Tameswar, K., Suddul, G., & Dookhitram, K. (2021). Enhancing deep
learning capabilities with genetic algorithm for detecting
software defects. In Progress in Advanced Computing and
Intelligent Engineering: Proceedings of ICACIE 2020 (pp. 211-
220). Springer Singapore.

Tong, H., & Zhu, J. (2022). A novel method for customer-oriented
scheduling with available manufacturing time windows
in cloud manufacturing. Robotics and Computer-Integrated
Manufacturing, 75, 102303.

Yedida, R., & Menzies, T. (2021). On the value of oversampling for
deep learning in software defect prediction. IEEE Transactions
on Software Engineering, 48(8), 3103-3116.

