A novel approach for metrics-based software defect prediction using genetic algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.39Keywords:
Rule mining, Defect, Genetic, software metrics, Prediction.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Software defect prediction is an important issue in the process of software development and maintenance, which is related to the overall success or failure of software. This is because early software failure prediction can improve software quality, reliability and efficiency, and reduce software cost. However, developing robust defect prediction models is a challenging task and many techniques have been proposed in the literature. In this paper, a software defect prediction model based on Novel Hybrid Genetics Software Defect Prediction (NHGSDP) is proposed. The supervised NHGSDP algorithm has been used to predict future software failures based on historical data. The evaluation process shows that the NHGSDP algorithm can be used effectively with high accuracy. The collected results show that the NHGSDP method has better performance.Abstract
How to Cite
Downloads
Similar Articles
- Arenlila Jamir, Sangeeta Kharde, Anita Dalal, Health-seeking behavior of first-time mothers toward pregnancy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neeru Garg, B.R. Jaipal, Harshvardhan Singh, Impacts of anthropogenic activities on the behavior of Indian fox (Vulpes bengalensis) in the Thar desert , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kowsalya Ramasamy, Thiyagarajan Krishnan, Performance analysis of RF substrate materials in ISM band antenna applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sivakumar S, Rajasekaran Kondareddy, Kalyani Ayyemperumal, Building SaaS solutions using microsoft azure for achieving safe and secure tax related software , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Allin Joe D, Thiyagarajan Krishnan, A modified sierpinski carpet antenna structure for multiband wireless applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dr. (Mrs.) Sushil Gupta, Hemant Garg, Pedigree Analysis Of Some Hereditary Diseases in The Successive Five Generations Of A Family Of Punjab With Special Reference To Syndactyly , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper