Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.62Keywords:
Wireless Body Area Networks, Cloud, Brouwer Fixed Point, Blowfish Nash Equilibrium, Stochastic Neural NetworkDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The trending technology in Wireless Sensor Networks (WSN) is to improve the healthcare system by using Wireless Body Area Networks (WBANs). Implantable Sensor and wearable sensors are inexpensive technology, which are designed to track the body signals and to get intermediate physical activity status. This is considered as an unremarkable choice for continuous health monitoring. In recent years, various routing protocols had been designed to provide reliable data transmission in WBAN. However, many of these protocols are not focused more on security aspects such as data confidentiality and data integrity in medical data transmission. And also, the energy efficient communication methods have significantly vulnerable to various attacks due to the lack of computationally efficient authentication and authorization process. To rectify the drawbacks of existing system a new approach Brower Blowfish Nash-secured Stochastic Neural Network-based (Brower BNSNN) is proposed for medical data transmission through WBAN in cloud environment. The Brower BNSNN method is designed to perform data collection, compression, encryption/decryption and anomaly detection for medical WBAN disease diagnosis in cloud environment. First, distinct numbers of sensor nodes that are attached in the bodies of multiple patients collected for further validation and anomaly detection. Secondly Fixed Point-based compression is performed in the cloud by the cloud user. The sensor nodes compress their sensed data into WBAN messages and sent to cloud server for further processing and from this data confidentiality and data integrity are ensured. Third step is Blowfish Nash Equilibrium-based encryption and decryption is applied to the compressed data to ensure security during the communication between devices or cloud server. Finally, Stochastic Neural Network-based anomaly detection model is designed to perform anomaly detection via authorization process. The designed network performs two-stage authorization such as validating sub-keys and checking kernel process attacks and network logs attacks. Simulations are performed to measure and validate the performance metrics in terms of data confidentiality, data integrity, disease diagnosis accuracy, authentication, in Health Monitoring System.Abstract
How to Cite
Downloads
Similar Articles
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- U. Perachiselvi, R. Balasubramani, Funding agencies in Tamil Nadu State Universities: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Suprabha Amit Kshatriya, Arvind R Yadav, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper