IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.20Keywords:
Big Data, Local Approximated Fuzzy Clustering, physical health condition, smart healthcare, Internet of ThingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Big Data is a collection of large amount used to store and to process for future use. Internet of Things (IoT) technology is used in smart home, smart healthcare. IoT has limited resources like processing capability and supplied energy. Many researchers carried out their research on resource optimized data clustering in bigdata environment. But, the computational complexity and energy consumption was not reduced by existing techniques. Therefore, IoT based Energy Aware Local Approximated Fuzzy MapReduce Clustering (IoT-EALAFMRC) Method is introduced. The main objective of IoT-EALAFMRC Method is introduced to perform an efficient priority based data transmission in smart healthcare environment. Initially, IoT devices are used to collect the large number of patient data in different location at a same time. During data transmission, there is a chance of traffic occurrence. In order to reduce the traffic occurrence rate during the data transmission to the physician (i.e., doctor), Energy Aware Local Approximated Fuzzy MapReduce Clustering is used with map and reduce function to group the patient data into normal constrained data or emergency constrained data based on physical health condition with higher clustering accuracy. IoT-EALAFMRC Method performs the cluster assignment based on neighborhood relationships among data. After clustering of patient data, the data is sent to the physician with minimum time consumption. Through minimizing the traffic, retransmission of patient data gets reduced. This in turn helps to reduce the energy consumption. Experimental evaluation is carried out using IoT-EALAFMRC Method on factors such as energy consumption, clustering accuracy and execution time for different number of patient data.Abstract
How to Cite
Downloads
Similar Articles
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Amala Deepa V., T. Lucia Agnes Beena, Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- A. Pappa, P. Muruganantham, A. Nagoor Gani, Properties on semi-ring of fuzzy matrices with compatible norm , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

