IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.20Keywords:
Big Data, Local Approximated Fuzzy Clustering, physical health condition, smart healthcare, Internet of ThingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Big Data is a collection of large amount used to store and to process for future use. Internet of Things (IoT) technology is used in smart home, smart healthcare. IoT has limited resources like processing capability and supplied energy. Many researchers carried out their research on resource optimized data clustering in bigdata environment. But, the computational complexity and energy consumption was not reduced by existing techniques. Therefore, IoT based Energy Aware Local Approximated Fuzzy MapReduce Clustering (IoT-EALAFMRC) Method is introduced. The main objective of IoT-EALAFMRC Method is introduced to perform an efficient priority based data transmission in smart healthcare environment. Initially, IoT devices are used to collect the large number of patient data in different location at a same time. During data transmission, there is a chance of traffic occurrence. In order to reduce the traffic occurrence rate during the data transmission to the physician (i.e., doctor), Energy Aware Local Approximated Fuzzy MapReduce Clustering is used with map and reduce function to group the patient data into normal constrained data or emergency constrained data based on physical health condition with higher clustering accuracy. IoT-EALAFMRC Method performs the cluster assignment based on neighborhood relationships among data. After clustering of patient data, the data is sent to the physician with minimum time consumption. Through minimizing the traffic, retransmission of patient data gets reduced. This in turn helps to reduce the energy consumption. Experimental evaluation is carried out using IoT-EALAFMRC Method on factors such as energy consumption, clustering accuracy and execution time for different number of patient data.Abstract
How to Cite
Downloads
Similar Articles
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Chaitanya A. Kulkarni, Reema Joshi, Isha Katariya, Tushar Palekar, A scoping review of influence of lifestyle factors on menstrual disorders in menstruating women , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Vibhu Tripathi, World Health Summit 2025- Taking Responsibility for Health in a Fragmenting World , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Sukhada S. Prabhu, Anuprita M. Thakur, Evaluating the Responsiveness of Hindi version of International Physical Activity Questionnaire-Long Form (IPAQ-LF) in healthy adults. , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Vijaya, D. Hema, Some properties of maximal product of two picture fuzzy soft graph , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

