IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.20Keywords:
Big Data, Local Approximated Fuzzy Clustering, physical health condition, smart healthcare, Internet of ThingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Big Data is a collection of large amount used to store and to process for future use. Internet of Things (IoT) technology is used in smart home, smart healthcare. IoT has limited resources like processing capability and supplied energy. Many researchers carried out their research on resource optimized data clustering in bigdata environment. But, the computational complexity and energy consumption was not reduced by existing techniques. Therefore, IoT based Energy Aware Local Approximated Fuzzy MapReduce Clustering (IoT-EALAFMRC) Method is introduced. The main objective of IoT-EALAFMRC Method is introduced to perform an efficient priority based data transmission in smart healthcare environment. Initially, IoT devices are used to collect the large number of patient data in different location at a same time. During data transmission, there is a chance of traffic occurrence. In order to reduce the traffic occurrence rate during the data transmission to the physician (i.e., doctor), Energy Aware Local Approximated Fuzzy MapReduce Clustering is used with map and reduce function to group the patient data into normal constrained data or emergency constrained data based on physical health condition with higher clustering accuracy. IoT-EALAFMRC Method performs the cluster assignment based on neighborhood relationships among data. After clustering of patient data, the data is sent to the physician with minimum time consumption. Through minimizing the traffic, retransmission of patient data gets reduced. This in turn helps to reduce the energy consumption. Experimental evaluation is carried out using IoT-EALAFMRC Method on factors such as energy consumption, clustering accuracy and execution time for different number of patient data.Abstract
How to Cite
Downloads
Similar Articles
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

