Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.37Keywords:
Internet of Things, Healthcare System, Deep Learning, Prediction of Heart Disease, Red Deer OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiac patients require prompt and effective treatment to prevent heart attacks through accurate prediction of heart disease. The prognosis of heart disease is complex and requires advanced knowledge and expertise. Healthcare systems are increasingly integrated with the internet of things (IoT) to collect data from sensors for diagnosing and predicting diseases. Current methods employ machine learning (ML) for these tasks, but they often fall short in creating an intelligent framework due to difficulties in handling high-dimensional data. A groundbreaking health system leverages IoT and an optimized long short-term memory (LSTM) algorithm, enhanced by the red deer (RD) algorithm, to accurately diagnose cardiac issues. Continuous monitoring of blood pressure and electrocardiograms (ECG) is conducted through heart monitor devices and smartwatches linked to patients. The gathered data is combined using a feature fusion approach, integrating electronic medical records (EMR) and sensor data for the extraction process. The RD-LSTM model classifies cardiac conditions as either normal or abnormal, and its performance is benchmarked against other deep-learning (DL) models. The RD-LSTM model showed better improvement in prediction accuracy over previous models.Abstract
How to Cite
Downloads
Similar Articles
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.