Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.37Keywords:
Internet of Things, Healthcare System, Deep Learning, Prediction of Heart Disease, Red Deer OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiac patients require prompt and effective treatment to prevent heart attacks through accurate prediction of heart disease. The prognosis of heart disease is complex and requires advanced knowledge and expertise. Healthcare systems are increasingly integrated with the internet of things (IoT) to collect data from sensors for diagnosing and predicting diseases. Current methods employ machine learning (ML) for these tasks, but they often fall short in creating an intelligent framework due to difficulties in handling high-dimensional data. A groundbreaking health system leverages IoT and an optimized long short-term memory (LSTM) algorithm, enhanced by the red deer (RD) algorithm, to accurately diagnose cardiac issues. Continuous monitoring of blood pressure and electrocardiograms (ECG) is conducted through heart monitor devices and smartwatches linked to patients. The gathered data is combined using a feature fusion approach, integrating electronic medical records (EMR) and sensor data for the extraction process. The RD-LSTM model classifies cardiac conditions as either normal or abnormal, and its performance is benchmarked against other deep-learning (DL) models. The RD-LSTM model showed better improvement in prediction accuracy over previous models.Abstract
How to Cite
Downloads
Similar Articles
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Gautam Nayak, Parthivkumar Patel, Developing speaking skills through task-based learning in English as a foreign language classroom , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.