
Abstract
Cardiac patients require prompt and effective treatment to prevent heart attacks through accurate prediction of heart disease. The 
prognosis of heart disease is complex and requires advanced knowledge and expertise. Healthcare systems are increasingly integrated 
with the internet of things (IoT) to collect data from sensors for diagnosing and predicting diseases. Current methods employ machine 
learning (ML) for these tasks, but they often fall short in creating an intelligent framework due to difficulties in handling high-dimensional 
data. A groundbreaking health system leverages IoT and an optimized long short-term memory (LSTM) algorithm, enhanced by the red 
deer (RD) algorithm, to accurately diagnose cardiac issues. Continuous monitoring of blood pressure and electrocardiograms (ECG) is 
conducted through heart monitor devices and smartwatches linked to patients. The gathered data is combined using a feature fusion 
approach, integrating electronic medical records (EMR) and sensor data for the extraction process. The RD-LSTM model classifies cardiac 
conditions as either normal or abnormal, and its performance is benchmarked against other deep-learning (DL) models. The RD-LSTM 
model showed better improvement in prediction accuracy over previous models.
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Introduction
The wearable monitoring system has become increasingly 
important in a range of healthcare applications, leveraging 
the internet of things (IoT), a technology that has seen rapid 
development in recent years (Chopade, S.S. et al., 2023; Zou 
N. et al., 2020). IoT-based healthcare systems gather real-
time data on various health parameters and update this 
information at regular intervals (Deepa S. et al., 2023). This 
process enables the prediction of diseases by analyzing the 
vast amounts of healthcare data produced by IoT devices 
(Poongodi T. et al., 2020). The IoT is recognized as a key 
future technology, drawing significant interest within the 

healthcare industry (Chen M. et al., 2018; N.V.L.M. Krishna 
Munagala et al., 2022). 

Elderly individuals often prefer to stay at home while 
maintaining their health. Consequently, there is a growing 
emphasis on developing remote health monitoring 
systems (Alshamrani M., 2022). Researchers globally have 
developed advanced applications such as intelligent 
healthcare systems, mobile healthcare, and health-aware 
recommendations by incorporating the internet of things 
(IoT) into the healthcare field (Lakshmi G.J. et al., 2021; Sherif 
Tawfik Amin et al., 2024). People who need to monitor their 
heart rate, blood pressure, and glucose levels can use smart 
wearables. These wearable devices can continuously track 
health data and transmit it to smartphones (Mamdiwar S.D. 
et al., 2021; Muthu B. et al., 2020).

As a result, real-time and historical data can be accessed 
remotely (Besher K.M. et al., 2020). The health monitor 
captures key indicators such as ECG, temperature, blood 
pressure, heart rate, weight, and glucose level. Using IoT 
devices in personal healthcare can promote a healthy 
lifestyle at a low cost (Habibzadeh H. et al., 2019; Patil N. M. 
et al., 2023).

India has one of the highest rates of heart disease 
globally, with nearly 4.78 million people affected, according 
to a 2022 report (Verma M. et al., 2024). Even young children 
are experiencing cardiac issues, with primary risk factors 
including diabetes, obesity, and hypertension, which 
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indicate a malfunction in the heart’s electrical impulses 
(Khourdifi Y. et al., 2019).

Wearable sensors and medical screenings are used to 
detect heart disease in patients. Physicians face challenges 
in accurately diagnosing patients by extracting crucial 
risk indicators from electronic medical records (EMR) for 
quick predictions. The current detection method involves 
monitoring patients both internally and externally using 
wearable sensors (Al-Makhadmeh Z. et al., 2019, Phillips S. 
M. et al., 2018). The frequent medical tests generate large 
amounts of data, classified as unstructured. Corruption of 
sensor data, such as noise and missing values, can lead to 
inaccurate outcomes and reduced system performance. 
The primary challenge is monitoring heart patients using 
electronic records and wearable device data. Another 
challenge is extracting significant and relevant aspects from 
online data to predict diseases (Azimi I. et al., 2019). Thus, 
a fusion technique is necessary to develop an intelligent 
system for analyzing and identifying hidden signs of heart 
problems (G. Rajkumar et al., 2023; Nithya R et al., 2023).

This research introduces a smart healthcare system 
employing an optimized deep learning technique combined 
with feature fusion. Four distinct datasets are used for 
analysis, including data from EMRs and wearable sensors. 
The process involves extracting Framingham risk factors 
(FRF) from the data. Sensor data is integrated with feature 
fusion to create comprehensive healthcare data for cardiac 
disorders.

The rest of the research paper is organized as follows: 
Section 2 reviews the current methods, while section 3 
details the proposed methodology. Section 4 covers the 
experimental evaluation of the proposed deep learning 
method in comparison to existing approaches. Finally, 
section 5 discusses the scientific contributions of this work 
and suggests directions for future development.

Related Works
This section discusses related research work carried out by 
various researchers. Gumaei et al. (A. Gumaei et al., 2019) 
employ machine learning for human activity recognition, 
specifically designing a multi-sensor hybrid deep learning 
model for identifying human activities. This model is 
tailored for elderly individuals to facilitate access to medical 
assistance through the use of multi-sensor data. Souri et al. 
(A. Souri et al., 2020) developed a health monitoring system 
for students utilizing machine learning models and data 
collected via the IoT. The physical conditions of children 
are assessed by monitoring their health and categorizing 
it using machine learning techniques. Ali et al. (F. Ali et al., 
2020) predict heart disease by employing an information 
gain and feature fusion method within deep learning 
models. Their study identifies conditions leading to heart 
disease to develop suitable treatments for patients. Chui et 
al. reviewed previous research on heart disease prediction 

within intelligent medicine. Their paper summarizes various 
machine-learning approaches and discusses the challenges 
of using these techniques for disease management. 

Muhammad Shafiq et al. (Muhammad Shafiq et al., 2023) 
stated that the World Health Organization (WHO) states 
that heart disease is the leading cause of death globally. 
A study across many hospitals developed a protocol for 
early, automated heart disease detection. The PASCAL 
dataset, created from digital stethoscope data, is widely 
used for research. The proposed research strategy involves 
three steps: Data collection via biosensors and IoT devices, 
uploading data to the cloud for analysis, and training models 
with existing medical records. Deep learning, particularly the 
deep CNN algorithm, is used to classify heart sounds, with 
the PASCAL dataset playing a crucial role. The deep CNN 
model has shown high accuracy.

Kamruzzaman (M. M. Kamruzzaman, 2020) developed 
an AI system designed to aid in early disease identification 
and emergency treatment within the medical field. This AI 
system can automatically analyze human body data and 
patient genetic information to provide clinical support 
to healthcare professionals via clinical reports. AI assists 
in decision-making due to significant advancements in 
healthcare data processing, enhancing the efficiency and 
accuracy of decision-making models. This improvement 
addresses shortages in medical resources, including 
equipment and staff, leading to cost savings.

Tuli et al. (S. Tuli et al., 2020) created an ensemble-based 
deep learning (DL) model integrated with fog computing for 
autonomous disease diagnosis in an intelligent healthcare 
system. Health fog provides a healthcare service within an 
IoT framework, enabling users to obtain cardiac patient data 
by submitting queries to the IoT-based fog model. While 
deep learning techniques that achieve high accuracy require 
substantial computational resources for both training and 
prediction, this model incorporates advanced deep learning 
networks with state-of-the-art computer models using new 
communication technologies and clustering-like models, 
resulting in improved accuracy and reduced latency.

E. Choi et al. (E. Choi et al., 2017) introduced the recurrent 
neural network (RNN) for early cardiac arrest detection. RNNs 
are well-suited for tracking events over a period of 20 to 
18 months and handling timely events such as diagnostic 
and pharmaceutical procedures, as well as practical 
recommendations. The sample performance is measured 
using structured logistic regression, with the neural network 
approximating the K classifier that most closely matches 
the analysis. Advanced study models focused on utilizing 
temporal correlations to enhance predictive accuracy for 
heart failure will be presented over a 12 to 18-month period.

Tomov et al. (N S. Tomov et al., 2018) discovered that 
implementing a five-level deep neural network (DNN) 
structure can reduce algorithm risks and improve prediction 
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accuracy. The optimization controls the architecture, as 
described by the authors, and effectively handles missing 
data and outliers automatically. The best structures were 
evaluated using k-fold cross-validation, and the Matthews 
correlation coefficient (MCC) was examined to assess 
performance.

Proposed Methodology
Heart disease is detected using a refined long short-term 
memory (LSTM) classification model that analyzes sensor 
data. During the training and testing phases, both normal 
and abnormal data are classified using information from 
the Lora cloud server. If the patient’s results are abnormal, 
an alert is sent to the doctor for further treatment. Figure 1  
illustrates the operational process of the intelligent 
healthcare-oriented deep learning (DL) framework, with 
additional tools acting as gateways to collect and transmit 
the acquired data. The system is trained to expedite disease 
detection, addressing the typically lengthy process involved. 
Directly testing sensor values can potentially lead to errors. 
Therefore, the devices maintain a constant connection with 
patients to continuously transmit sensor data. Testing begins 
once the training phase is completed. The forecast has two 
output classes: “regular,” indicating the patient’s condition is 
normal, and “abnormal,” indicating the patient’s condition is 
critical and requires care. Sensor values are classified based 
on the training outcomes to provide different effects when 
comparing system values. The steps of the training phase 
are outlined below.

Collection of Sensor Data
This section outlines how gathered sensor data is used in 
the prediction process within the research. Wearable sensors 
collect physiological data, while activity and medical sensors 
are employed for comprehensive data collection. Risk factors 
are identified by analyzing unstructured EMR data, which 
includes medical history records, laboratory findings, allergy 
prescriptions, and personal inquiries with comments for 
prediction purposes. The FRFs are extracted by analyzing 
the EMR, which contains information such as cholesterol 
levels, age, gender, body mass index, blood pressure, and 

heart rate. This data consists of complex variables with 
high dimensionality, resulting in a vast amount of EMRs. 
Therefore, a text mining method is required to effectively 
extract FRFs from the unstructured EMR data.

Layer for Extracting the Features and Fusion Process
This section discusses the process of extracting valuable 
information from unstructured data and converting it 
into a structured format. Initially, the extraction of FRFs is 
described. This is followed by a discussion on the feature 
fusion layer, which integrates sensor data with the FRF 
scheme to predict heart disease.

Extraction of FRF
Within the FRF extraction module, data is obtained from 
unstructured EMRs using two primary methods: rules-based 
engines and text-mining algorithms. Text mining involves 
three key processes. First, lemmatization and morphological 
algorithms are applied to the unstructured data to identify 
the lemma of each word. In the next stage, tokenization 
is used to extract small segments from the disorganized 
text and divide complex information. Finally, risk factors 
are identified using N-gram methods, which analyze 
two or three consecutive words in the risk factor data. 
Pictograms represent pairs of neighboring factor terms, 
while 3D graphs represent triplets of adjacent factor terms. 
Rules are established to capture the nuances and distinct 
characteristics of EMR data. By assigning unstructured EMRs 
to the FRF extraction module, risk factors related to heart 
disease are identified and retrieved.

Fusion of sensor data with FRFs
The fusion technique combines the retrieved FRFs with 
sensor data, enhancing the classification process by 
integrating diverse data sources to provide more valuable 
and relevant information. This research emphasizes 
both feature-level and data-level fusions. Sensor data is 
collected from patients’ physiological activities, while FRFs 
are extracted, including the patient’s medical history, age, 
gender, and other relevant factors for the fusion process. The 
combined data is stored in CSV files for convenient parsing 
and processing.

The system aims to determine the optimal set of attributes 
for accurate disease identification by utilizing pertinent and 
concise information from sensor data. However, missing 
values in sensor data and irrelevant information in derived 
features can increase feature dimensionality and reduce 
accuracy. Additionally, classification can lead to increased 
complexity and higher memory requirements. Therefore, 
data pre-processing is essential to enhance the quality of the 
extracted features before initiating the prediction process.

Data Pre-processing
After integrating the sensor data and EMR, the data must 
undergo a meticulous pre-processing procedure to ensure 

Figure 1: System architecture of smart healthcare based on 
optimized DL technique
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accurate diagnosis. This process involves three critical steps: 
redundancy elimination, separation, and missing attribute 
replacement.

Step 1: Redundancy elimination
The first step involves identifying and removing any 
redundant data. Redundant data refers to unnecessary 
or repetitive information that does not contribute to the 
diagnosis and can clutter the dataset, making it less efficient. 
By eliminating these redundant attributes, we reduce 
the overall volume of data, simplifying the analysis and 
improving the system’s performance. This step requires a 
careful examination of the data to ensure that only the most 
relevant and essential information is retained.

Step 2: Separation
The second step is the separation of data based on specific 
criteria, such as the type of chest pain experienced by the 
patients. This classification is crucial as it allows for more 
targeted analysis and diagnosis. The types of chest pain are 
categorized into four groups:

• Regular angina
Characterized by predictable chest pain during physical 
exertion or stress.

• Differential angina
Refers to varying degrees of chest pain that might not always 
be predictable.

• Non-angular pain
Chest pain that is not related to angina, possibly due to other 
factors such as muscular or skeletal issues.

• Asymptomatic pain
Instances where the patient experiences no noticeable pain 
but may still have underlying heart conditions.

By separating the data into these categories, healthcare 
professionals can apply more specific diagnostic criteria and 
treatment plans suited to each type of chest pain.

Step 3: Missing attribute replacement
The final step addresses the issue of missing data within 
the dataset. Missing values can significantly affect the 

accuracy of the diagnosis. To handle this, each missing 
attribute is identified and replaced with an estimated value. 
This replacement process involves comparing the available 
attribute values of the patient with similar cases to estimate 
the most accurate substitute. For example, if a patient’s 
blood pressure reading is missing, it might be estimated 
based on their previous readings or the readings of similar 
patients. This ensures that the dataset remains complete 
and reliable for analysis.

Additionally, any irrelevant or inappropriate attributes 
are removed to further streamline the data. This might 
include attributes that do not directly impact the diagnosis 
or are deemed extraneous.

Through these steps, the pre-processing procedure 
refines the dataset, ensuring that only high-quality, relevant 
data is used for the diagnosis. This enhances the overall 
accuracy and reliability of the intelligent healthcare system, 
allowing for more precise disease detection and treatment 
recommendations. By understanding the rationale behind 
each step—eliminating redundancy to streamline data, 
separating data for targeted analysis, and replacing missing 
values for completeness—healthcare professionals can 
better appreciate the intricacies involved in preparing data 
for advanced diagnostic processes.

Heart Disease Prediction using Optimized LSTM
Recurrent neural networks (RNNs) are an extension of the 
neural feedback network. In a standard RNN, the gradient 
tends to either vanish or grow exponentially during training. 
LSTM networks, on the other hand, are specifically designed 
to address these issues and are highly effective at problem-
solving. LSTMs are efficiently implemented and consist of 
three gates (input gate, forget gate, and output gate) and 
a memory cell. The mathematical formulation of LSTM 
operations is described in equations (1-6). Figure 2 illustrates 
the typical structure of an LSTM network.

x =   (1)

𝑓𝑡 = 𝜎(𝑊𝑓.𝑋) + 𝑏𝑓  (2)
𝑖𝑡 = 𝜎(𝑊𝑖.𝑋) + 𝑏𝑖  (3)
𝑜𝑡 = (𝑊𝑜.𝑋) + 𝑏𝑜  (4)
𝑐𝑡 = 𝑓𝑡⊙𝑐𝑡-1 +  𝑖𝑡⊙tanh (𝑊𝑐.𝑋 + 𝑏𝑐)   (5)
ℎ𝑡 = 𝑜𝑡⨀tanh (𝑐𝑡)   (6)
The weighted matrices 𝑊𝑖, 𝑊𝑓, 𝑊𝑜 ∈ R×2d and biases 

𝑏𝑖, 𝑏𝑓, 𝑏𝑜 ∈ Rd are crucial components of the LSTM model. 
LSTM networks address the short-term memory limitations 
of standard RNNs by using integrated mechanisms called 
gates to regulate information flow. These gates determine 
which data should be retained or discarded at each step. The 
LSTM operates within an extended network that transmits 
relevant data to make predictions.

The key concept behind LSTM is the cell state and its 
multiple gates. The cell state acts as a conduit for information 
transmission. While processing sequences, valuable Figure 2: The architecture of a standard LSTM
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information about the cell’s status is maintained. Early 
information can lead to transient situations, reducing the 
impact of short-term memory. As the cell state progresses, 
data is added or removed through the gates. These gates 
enable the network to remember or forget information, thus 
uncovering significant insights.

The research optimizes the weighted matrices using the 
RD algorithm, which is detailed in the following section. This 
optimization enhances the performance and accuracy of the 
LSTM model by fine-tuning the weights to better capture 
the underlying patterns in the data.

Optimization using RD
The primary goal of any optimization technique is to find an 
optimal solution based on the problem variables. In the red 
deer algorithm (RDA) (Fathollahi-Fard, A.M. et al., 2020), the 
concept of ‘red deer’ is used to represent this layout. Here, RD 
corresponds to the variable X, and the prospective solution 
exists outside the feasible region, meaning it is unattainable 
for X. The dimensional optimization problem is intricate, 
and a red deer is represented as an array to navigate this 
complexity effectively.

The RDA works by mimicking the natural behavior 
and characteristics of red deer during the rutting season, 
where they compete and interact to find the best possible 
outcomes. Each ‘red deer’ in the algorithm represents a 
potential solution in the search space. These solutions are 
evaluated, and the best-performing ones are selected to 
guide the search process further. Through iterative processes, 
the RDA refines these solutions, aiming to reach an optimal 
or near-optimal solution for the given problem. This 
approach helps in efficiently handling the high-dimensional 
optimization challenges often encountered in complex 
systems like LSTM networks. Equation (7) defines this array.

𝑅𝑒𝑑 𝐷𝑒𝑒𝑟 = [𝑋1, 𝑋2, 𝑋3, …𝑋𝑁𝑣𝑎𝑟  ]  (7)
Eq. (8) provides the validation of the function value for 

each RD:
𝑉𝑎𝑙𝑢𝑒 = 𝑓(𝑅𝑒𝑑 𝐷𝑒𝑒𝑟 ) = 𝑓(𝑋1, 𝑋2, 𝑋3, …𝑋𝑁𝑣𝑎𝑟 )   (8)
To implement the red deer algorithm (RDA) for 

optimizing the LSTM network, follow these steps to create 
the initial population and enhance the performance:

Initialize population (Npop)
Create an initial population of red deer, denoted as 
𝑁popNpop. This population includes both male and female 
red deer.

Pseudo-code: Initialize Population
Npop = 100  #Total population size

#Number of male red deer, for example, 20% of the 
population

Nmale = int (0.2 * Npop)  
Nhind = Npop - Nmale  #Number of female red deer
population = initialize_population(Npop)

Determine Male and Female Red Deer
• Select the best-performing individuals from the 

population to be male red deer. The number of male 
red deer is 𝑁maleNmale .

• The remaining individuals will be female red deer, with 
the number given by 𝑁hind=𝑁pop−𝑁male.

Pseudo-code: Evaluate and select best male red deer
population = evaluate_population(population)

male_red_deer = select_best_males(population, Nmale)
female_red_deer = select_rest_as_females(population, 

Nmale)

Roaring Competition
Male red deer attempt to improve their status by “roaring.” 
This step involves enhancing their solution’s quality.

Male red deer, as effective options in this strategy, will 
try to outperform their peers through a competitive process.

Pseudo-code: Roaring competition
def roaring_competition(male_red_deer):

for male in male_red_deer:
   neighbours = locate_neighbours(male, male_red_deer)
        best_neighbour = find_best_neighbour(neighbours)
        if best_neighbour.performance > male.performance:
            male.update_solution(best_neighbour.solution)
    return male_red_deer

Locate Neighbours
Identify the neighboring male red deer based on the 
proximity of their solutions in the search space.

Evaluate the objective performance of these neighboring 
solutions.

Pseudo-code: Locate neighbours and update solutions
def locate_neighbours(male, male_red_deer):
# Locate neighbouring male red deer based on solution 
proximity
    neighbours = []
    for neighbour in male_red_deer:
        if neighbour is not male:
            neighbours.append(neighbour)
    return neighbours
def find_best_neighbour(neighbours):
    best_neighbour = max(neighbours, key=lambda x: 
x.performance)
    return best_neighbour

Update Solutions
If a neighboring male red deer’s objective performance 
surpasses that of the current male red deer, replace 
the current male red deer’s solution with the superior 
neighboring solution.

Pseudo-code: Iterative optimization process
for iteration in range(max_iterations):
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    male_red_deer = roaring_competition(male_red_deer)
    population = male_red_deer + female_red_deer
    population = evaluate_population(population)
To enhance the state of guys, the following equation is 

proposed:

 (9)

The red deer algorithm (RDA) is used for optimizing 
LSTM networks by mimicking the natural behaviors of 
red deer. Initially, a population (Npop) is generated within 
defined upper (UB) and lower bounds (LB). This population 
is evaluated to identify the best-performing male red deer 
(Nmale), while the rest are categorized as female (Nhind). The 
top-performing males are further divided into commanders 
and stags, with commanders having a higher influence. 
During the roaring competition, each male generates new 
potential solutions by adjusting their current solutions 
within the bounds. If these new solutions show improved 
performance, they replace the old ones. This process 
iteratively refines the population through continuous 
evaluation and updating. The ultimate goal is to leverage 
the competitive and adaptive nature of red deer to enhance 
the accuracy and efficiency of LSTM network optimization 
by integrating sensor and EMR data, thus ensuring the most 
relevant and high-quality data is used for accurate disease 
prediction. Equation (10) is utilized to get the overall quantity 
of commander RD males: 

𝑁𝐶𝑜𝑚 = 𝑟𝑜𝑢𝑛𝑑{𝛾.𝑁𝑚𝑎𝑙𝑒}  (10)

In the red deer algorithm (RDA), the top-performing 
male red deer are classified as commanders, denoted as 
NCom. The parameter 𝛾, which ranges from zero to one, 
represents the initial value of the algorithm model. The 
optimization process starts by generating a population 
(Npop) within predefined upper (UB) and lower bounds 
(LB). After evaluating the population to determine 
fitness levels, the best males are identified and further 
divided into commanders (NCom) and stags. During the 
roaring competition, each male creates new potential 
solutions by modifying their current solutions within the 
specified bounds. If these new solutions show better 
performance, they replace the previous ones. This iterative 
process continuously improves the population, using the 
competitive nature of red deer to enhance the optimization 
of the LSTM network. The \(\gamma\) parameter helps 
adjust the algorithm’s convergence rate, balancing between 
exploration and exploitation for effective and efficient 
disease prediction. Equation (11) is utilized to determine the 
stag’s number, denoted as 𝑁𝑠𝑡𝑎𝑔.

𝑁𝑠𝑡𝑎𝑔 = 𝑁𝑚𝑎𝑙𝑒 ― 𝑁𝐶𝑜𝑚    (11)

Spontaneously, conflicts between commanders and 
stags will arise, leading to two potential solutions. Once 

the positions of these solutions are identified, the leaders 
and stags are guided towards convergence. This process 
generates two new solutions. The leader is then replaced 
with the best solutions, which are selected from the best 
of the four options: The two newly obtained solutions that 
surpass the leader and the original stag’s solution. Two 
mathematical formulas are provided in Eq. (12-13) for the 
combat procedure.
𝑁𝑒𝑤1 = (𝑐𝑜𝑚 + 𝑆𝑡𝑎𝑔) /2 + 𝑏1 × ((𝑈𝐵 ― 𝐿𝐵 ) ∗ 𝑏2 )  + 𝐿𝐵 )      (12)
𝑁𝑒𝑤2 = (𝑐𝑜𝑚 + 𝑆𝑡𝑎𝑔) /2 ― 𝑏1 × ((𝑈𝐵 ― 𝐿𝐵 ) ∗ 𝑏2 )  + 𝐿𝐵 )      (13)

During military operations in the red deer algorithm 
(RDA), two new solutions, New1 and New2, are generated. 
In this context, “Com” represents the commanders (leaders), 
and “stag” symbolizes the stags. The search space for 
potential solutions is defined by the upper bound (UB) and 
lower bound (LB), which set the maximum and minimum 
limits. The values B1 and B2 are generated using a uniform 
distribution function ranging from zero to one, reflecting 
the randomness of the battle process.

Among the four options–Com, stag, New1, and New2–only  
the best solutions are selected. This selection process 
illustrates the competitive nature of male red deer during 
conflicts, where proximity and interaction between leaders 
and stags are crucial. The formulas capture the essence of 
these interactions, as one participant emerges victorious while  
the other faces defeat. The superior solutions are those that 
outperform their counterparts, ensuring that the most optimal 
solutions are retained and further refined in subsequent 
iterations. Deer, like other species, engage in mating behavior. 
The mating process is typically determined by:

𝑜𝑓𝑓𝑠 = (𝐶𝑜𝑚 + 𝐻𝑖𝑛𝑑) /2 + (𝑈𝐵 ― 𝐿𝐵 )  × 𝑐  (14)
The symbols 𝐶𝑜𝑚 and 𝐻𝑖𝑛𝑑 represent commanders and 

hinds, respectively. Offs is a novel solution.
Two distinct procedures are employed to select the next 

generation in the red deer algorithm (RDA). Initially, we 
consider only the male red deer (RDs), who serve as both 
leaders and key contributors, representing the proportion of 
optimal solutions among all available options. The second 
technique focuses on the survivors for the next generation. 
This involves selecting all stags and offspring generated 
through a fitness value mating process, either by fitness 
matching or using the roulette wheel mechanism. Once the 
optimal solution quality is achieved after a specified number 
of iterations, the termination process is executed in the RD 
algorithm. This ensures that the most fit individuals are 
carried forward, continuously improving the solution quality.

Results and Discussion
The proposed IoT framework is a contemporary model that 
integrates existing hardware components, a microcontroller, 
and LoRA communication devices to transmit data to the 
cloud. The system securely maintains patient information, 
including age, gender, and identification number.
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Description of Dataset
The system utilizes four databases: The University of 
California, Irvine (UCI) Hungarian cardiology database, sensor 
data (SD), Framingham (FG), and public health (PH), all of 
which are readily accessible online. The combined database 
consists of 76 features, but only 14 of these features were used 
in published studies. When creating the confusion matrix for 
prediction, four parameters are considered, as shown in Table 1.  
True positive is denoted as HDp , true negative as HDn , false 
positive as NHDp , and false negative as NHDn .

Simulation analysis involves the use of multiple 
parameters, with the following equation used to calculate 
accuracy (AC):

𝐴𝑐𝑐𝑢𝑟 𝑎𝑐𝑦 (𝐴𝐶)  =   (15)
Here:
• HDp  (True Positive) represents the instances correctly 

identified as having heart disease.
• HDn  (True Negative) represents the instances correctly 

identified as not having heart disease.
• NHDp  (False Positive) represents the instances incorrectly 

identified as having heart disease.
• NHDn  (False Negative) represents the instances 

incorrectly identified as not having heart disease.

Precision/PPV
This identifies the chance of patients with real cardiac 
disease. PPV can be assessed using equation (16).

𝑃𝑃𝑉 =  (16)

NPV
Finding the patient with no risk factors of heart disease and 
is evaluated as shown in equation (17).

𝑁𝑃𝑉 =  (17)

Sensitivity/Recall
This measure is used to identify patients with risk factors 
for heart disease.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸)  =  (18)

F1 score
This is the harmonic mean of precision and recall.

𝐹1 = 2. 
 
 (19)

Proposed Performance Evaluation
The Framingham (FG) dataset contains the largest number 
of medical data records with 4000 entries, followed by the 
public health (PH) dataset with 1025 recordings, the sensor 
data (SD) dataset with 900 records, and the UCI dataset with 
303 records. The proposed optimized LSTM model is initially 
tested for accuracy using these records, as depicted in Figure 3.  
The suggested model includes 16 characteristics from the 
UCI, FG, and SD datasets, while only 14 features are utilized 
from the PH dataset.

The proposed model achieved an accuracy of 98.20% 
on the FG dataset and 93.3% on the UCI dataset. This 

difference in accuracy is attributed to the distribution 
of data; typical entries in both the UCI and FG datasets 
contain 16 characteristics. The optimized LSTM attained an 
accuracy of 97.60% on the PH dataset and 96.30% on the 
SD dataset. Figure 4 shows the experimental evaluation 
of recurrent neural networks with LSTM and other deep 
learning approaches using different parameters on the FG 
dataset. The study focused exclusively on the FG dataset due 
to its larger number of records compared to the other three 
datasets, allowing for more robust testing of the proposed 
model using a substantial quantity of medical records.

The sentiment analysis results demonstrate that various 
models achieved the following accuracies: the recurrent 
model obtained 91.1%, the autoencoder reached 92.1%, the 

Figure 3: Graphical representation of proposed optimized LSTM on 
different datasets in terms of accuracy

Table 1: Confusion matrix (PPV: Positive Predictive Value; NPV: 
Negative Predictive Value)

Test 
results

Truth
Total

Heart disease No heart disease

Positive HDp NHDp PPV=HDp/(HDp+NHDp)

Negative HDn NHDn NPV=NHDn/(HDn+NHDn)

Figure 4: Graphical representation of proposed RD optimization 
with different DL classifiers on the FG dataset
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recursive model achieved 93.3%, and the proposed LSTM 
model scored 97.8%. The recursive network’s computation 
is slow due to issues like gradient vanishing and exploding. 
Autoencoders are particularly vulnerable to input errors 
and become more complex with the addition of extra 
layers. In contrast, LSTM is designed to address vanishing 
gradient issues without requiring extensive fine-tuning, 
and its weight optimization is achieved using the RD 
algorithm. Consequently, the LSTM with RD outperformed 
other current deep-learning classifiers. The recurrent model 
achieved 60.2% specificity and a 90.2% F1-score, while the 
proposed LSTM-RD model obtained 92.6% specificity and 
a 95.7% F1-score. The recursive model excelled in precision, 
achieving 93.4%. Overall, the proposed LSTM approach 
attained an accuracy of 95.1%.

The recurrent neural network and autoencoder each 
produced an accuracy of approximately 83%. In comparison, 
the recursive neural network achieved 92.4% accuracy, and 
the suggested LSTM model scored 98.2% accuracy on the 
FG dataset. Figure 5 illustrates the experimental evaluation 
of the suggested LSTM model using different optimization 
methods with respect to accuracy on the FG dataset.

Implementing different optimization approaches with 
the proposed LSTM results in varying levels of accuracy 
performance. The genetic algorithm (GA) obtained 88.7% 
accuracy, particle swarm optimization (PSO) achieved 
92.59%, ant colony optimization (ACO) reached 97%, and 
the proposed red deer (RD) algorithm achieved the highest 
performance with 98.2% accuracy. GA’s limited performance 
is attributed to its dependence on initial population selection 
and the fitness function. PSO tends to quickly converge to 
local optima in high-dimensional spaces, while ACO faces 
a stagnation phase due to a high rate of exploration and 
exploitation. The RD algorithm, on the other hand, effectively 
balances exploration and exploitation, leading to superior 
accuracy in optimizing the LSTM model. Figure 6 presents 
the experimental findings of different DL classifiers in the 
examination of positive predictive value (PPV).

The proposed LSTM model achieved nearly 98% PPV for 
the PH and FG datasets, significantly outperforming the 
recurrent model, which achieved around 88.50% PPV. The 
autoencoder model attained close to 92% PPV, while the 
recursive model achieved nearly 94% PPV. For the UCI and 
SD datasets, the suggested LSTM model reached a precision 
of almost 97%, whereas the recurrent model achieved 
87% precision. The autoencoder and recursive approaches 
produced approximately 91 to 93% PPV on the UCI and SD 
datasets. This analysis indicates that the proposed LSTM 
model exhibits a high PPV, leading to enhanced prediction 
accuracy for heart disease. Figure 7 displays the evaluation of 
these classifiers on all datasets based on negative predictive 
value (NPV).

A low NPV indicates high categorization performance. 
The proposed LSTM model achieved NPV rates ranging from 
83 to 86% on the UCI and SD datasets, while the recurrent 
model attained a 95% NPV rate on the same datasets. The 
autoencoder and recursive approaches achieved NPV rates 
ranging from 90 to 94% on the UCI and SD datasets. For the 
PH and FG datasets, the LSTM model achieved approximately 
88.50% NPV, compared to the recurrent model’s nearly 94%, 
the autoencoder model’s approximately 92.50%, and the 
Recursive model’s nearly 95% NPV. This analysis indicates 

Figure 5: Graphical representation of proposed LSTM with different 
optimization techniques in terms of accuracy on the FG dataset

Figure 6: Analysis PPV

Figure 7: Analysis of NPV
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that the NPV value is higher in the recurrent technique, 
which consequently reduces its prediction accuracy to 83.8% 
on the FG dataset.

Conclusion
The study develops an advanced healthcare model to predict 
heart disease using an optimized deep-learning approach. 
Initially, sensor data and EMR data are collected to gather 
fundamental medical details about the patient, followed by 
the extraction of FRF. The fusion procedure combines these 
extracted characteristics with the assembled data, and pre-
processing steps are applied to eliminate missing values. 
The prediction process employs the LSTM method, with 
model optimization achieved through the RD algorithm, 
resulting in the proposed model being termed RD-LSTM. 
Experiments were conducted using four datasets: UCI, SD, 
PH, and FG. The simulation results demonstrated that the 
combined optimization (RD) and classifier (LSTM) strategies 
outperformed previous methods across various parameters. 
The RD-LSTM model achieved an accuracy of 98.2%, which 
shows that the proposed RD-LSTM produces higher accuracy 
than other methods. The LSTM model requires additional 
memory for training on the heart disease dataset, and 
implementing dropout is challenging with this technique. 
To address this issue, enhancing the LSTM model or utilizing 
a different deep-learning technique with the same datasets 
for heart disease identification is recommended.
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