Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.17Keywords:
Transient response, thick disc, fractional-order derivative, temperature distribution, thermal stress, integral transformDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The study investigates thermal interactions in a two-dimensional time fractional-order thermoelastic problem in a homogeneous, isotropic, and perfectly conducting thick annular disc subjected to a point impulsive sectional heat source. We utilize unconventional integral transformation techniques to study the thermoelastic response of a disc, in which an internal heat source is generated according to the linear function of the temperature and radiation-type boundary conditions. The time fractional-order thermoelastic theory is used to determine temperature, displacement, and stresses through a series of Bessel functions. Numerical calculations analyze fractional-order parameters on aluminum discs, incorporating time-based fractional derivatives into field equations for practical engineering scenarios, enhancing thermal properties analysis.Abstract
How to Cite
Downloads
Similar Articles
- Dhara B. Makwana, Adwait Mevada, Diversity and Green Synthesis of Various Metal Nanoparticles (MNPs) , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Preeti Gupta, Shalie Malik, Photoperiodic Supervision and Adaptability in Avian System , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Akanksha Singh, Nand Kumar, Analysis of renewable energy and economic growth of Germany , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Geetha Satish Pisharody, Sanjay Gupta, Understanding Resilience: An Analytical Study of Adversity Quotient Levels Among Higher Secondary Learners in Gujarat State , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Rahul ., Naveen Sharma, Effect of Suspended Particles on a Couple-Stress Rivlin-Ericksen Ferromagnetic Fluid Heated from Below in a Porous Medium, with Varying Gravity and Magnetic Field. , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Varsha Kachhela, Jalpa Rank, Charmy Kothari, Investigating optimal conditions for direct red 37 biodegradation using Enterococcus innesii strain CV10 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 20 21 22 23 24 25 26 27 28 29 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

