
Abstract
The study investigates thermal interactions in a two-dimensional time fractional-order thermoelastic problem in a homogeneous, 
isotropic, and perfectly conducting thick annular disc subjected to a point impulsive sectional heat source. We utilize unconventional 
integral transformation techniques to study the thermoelastic response of a disc, in which an internal heat source is generated according 
to the linear function of the temperature and radiation-type boundary conditions. The time fractional-order thermoelastic theory is used 
to determine temperature, displacement, and stresses through a series of Bessel functions. Numerical calculations analyze fractional-
order parameters on aluminum discs, incorporating time-based fractional derivatives into field equations for practical engineering 
scenarios, enhancing thermal properties analysis.
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Introduction 
Fractional calculus gained popularity due to its ability to 
improve the accuracy of modeling dynamical systems, and 
recent applications such as mathematical approximation, 
chemical probing, fractal design, and thermoelastic 
modeling may confirm these theorems. The author 
provides a brief overview of the theoretical advancements 
in thermoelasticity theories. Povstenko (2009) conducted a 
thorough analysis of thermoelasticity using the fractional 
heat conduction equation. Sherief et al. (2010) developed a 
theory of thermoelasticity based on fractional order, which 
includes both coupled and generalized theories. Ezzat 
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(2011) and other researchers [Bhoyar et al. (2020), Bikram 
and Kedar (2021), Srinivas et al. (2021), Varghese et al. (2020)] 
further advanced this hypothesis, providing solutions to 
various challenges in thermoelasticity. Recently, Youssri 
et al. (2023) explored the time-fractional heat conduction 
equation in one dimension, including non-local temporal 
circumstances, and proposed a new numerical technique 
called the rectified Chebyshev Petrov-Galerkin procedure, 
which expands on the traditional Petrov-Galerkin approach. 
Nadeem et al. (2023) propose a method that uses the 
Aboodh transform and homotopy perturbation scheme 
to approximate solutions for time-fractional porous media 
and heat transport equations. Thus, fractional calculus has 
significantly altered many established theories of physical 
processes. It is also discovered that almost all literature 
neglects the radiation boundary conditions.

The manuscript combines previous research with Caputo 
fractional derivative’s comprehensive uncoupled theory of 
thermoelasticity and recasts it into a practical application 
with radiation. Furthermore, the authors of this paper 
used simplified radiation models that provide reasonably 
accurate results without fully accounting for radiation 
boundary conditions. Thus, we have adopted alternative 
radiation boundary conditions in heat transfer analysis due 
to their inherent complexities in modeling radiation and the 
computational challenges they pose.

Notations 
Θ internal source 

function
Φ thermodynamic 

temperature
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κ thermometric 
diffusivity

θ temperature

ρ density e dilatation

q heat conduction 
vector

k thermometric conductivity

T∇ temperature gradient α fractional-order

G shear modulus t time

υ Poisson’s ratio M Michell’s function

ϕ Goodier’s potential ,U W displacements functions

vC calorific capacity
0T reference temperature

( )δ Dirac Delta function
ik radiation coefficients

,Eα α
Mittag-Leffler 
function

s Laplace parameter

Prerequisites of Fractional Calculus 
The classical theory of heat conduction is based on the 
Fourier law ( ) ( )q t k T t= − ∇  in combination with the law of 
conservation by Biot (1956), which leads to the parabolic heat 
conduction equation 2/T t Tκ∂ ∂ = − ∇ . Lord and Shulman (1967) 
introduced the idea of generalized thermoelasticity with a 
single relaxation period for an isotropic body. Caputo and 
Mainardi (1971) found that fractional derivatives accurately 
describe viscoelastic materials, connecting them to linear 
viscoelasticity theory. Green and Lindsay (1972) formulated 
the theory of generalized thermoelasticity with two 
relaxation durations based on a generalized thermodynamic 
inequality. Norwood (1972) and Moodi and Tait (1983) 
proposed a time-non-local equation 0( ) ( ) ( )tq t K t T dκ τ τ τ= − − ∇∫ .  
Chandrasekharaiah (1986)  noted that the heat flux 
constitutive equation can be rewritten in a non-local form 
using the “short-tale” exponential time-non-local kernel 

( ) exp[ ( ) / ], 0K t tτ τ ζ ζ− = − − > . Povstenko (2005a, 2005b) 
proposed the time-fractional heat conduction equation with 
a “long-tale” power kernel, which can be taken in terms of 
fractional integrals and derivatives based on the time-non-
local dependence between flux vectors and gradients as 

2/T t Tα α κ∂ ∂ = − ∇  and power kernel as

1( ) ( ) , 0 1,
( )0( )

2( ) ( ) , 1 2
( )0

t tk T d
t

q t
t tk T d

ατ τ τ α
α

ατ τ τ α
α

− ∂ −− ∇ < <∫
∂ Γ=  − −

− ∇ < <∫ Γ

 	 (1)

Here, we recall the definition by Caputo (1967) and 
Caputo and Mainardi (1969) of the fractional-order derivative 

( ) / ( )n nd f t dt I D f tα α α−=  of the function ( )f t  of order n α−  is 
signified as

1( ) ( ) , 1 ,
( )0( ) ( )

( ), ,

n nt t d f d n nnn dn nD f t I D f tc nd f t nndt

ατ τ τ α
α τα α

α

− − − − < <∫
Γ −−= = 


=



 (2)

where ( )f t  is a Lebesgue integrable function and Γ  
is the gamma function. Liang et al. (2015) suggested the 
Laplace transform rule that if 0α > , [ ] 1n α= + , and function 

( )f t  and its integer derivatives of order 1,2,.., 1k n= −  are 
continuous on [0, )+∞  and of exponential order, while ( )D f tc

α  
is piecewise continuous on [0, )∞ . Then

1 1[ ( )] [ ( )] (0 ), 1
0

n k kD f t s f t s D f n nc
k

α α α α
− − − += − − < <∑
=

   	 (3)

Statement of the Practical Problem

Fractional heat conduction in thick disc
The setup involves a thick annular disc with linear 
temperature function sources, isotropic and homogeneous 
material, and constant properties. The disc with a thickness 
of h is placed within space D, which is described by 

,a r b h z h< < − < < ,  as shown in Figure 1. The initial 
temperature, lower face, and curved surface of the disc are 
assumed to be at zero temperature, and its upper face is 
subjected to radiation-type boundary conditions with point 
impulsive sectional heat supply.

The heat conduction equation by Marchi and Fasulo 
(1967) and Kumar et al. (2013) with an internal heat source 
is taken as 

2

2

1 ( , , , )r r z t
r r r z t

α

α

θ θ θκ θ
 ∂ ∂ ∂ ∂  + +Θ =  ∂ ∂ ∂ ∂  

 	 (4)

The undergiven functions are seen as the superposition 
of a simpler function by Paterson (1941)

( , , , ) ( , , ) ( ) ( , , )r z t r z t t r z tθ ψ θΘ ≡ Φ +  	 (5)
and

0 0
( ) ( )

( , , ) ( , , ) e , ( , , ) ( , , ) e
t t

d d
T r z t r z t r z t r z t

ψ ζ ζ ψ ζ ζ
θ χ

− −∫ ∫= =Φ  	 (6)

and for the sake of brevity, we consider 

0 0( ) ( ) ( )( , , ) ,
2

r r z z P tr z t
r

δ δχ
π

− −
=  0 ,a r b≤ ≤ 0h z h− ≤ ≤  	 (7)

Substituting Eqs. (5)-(7) into (1), one obtains

Figure 1: Thick annular disc configuration



2080	 Ravi Chaware et al.	 The Scientific Temper. Vol. 15, No. 2

2

2

1 ( , , )T T Tr r z t
t r r r z

α

α κ χ
 ∂ ∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂  

 	 (8)

subjected to the initial and boundary conditions 

0

0
0

0, 0 1,

0,1 2,

t

t
t

T

TT
t

α

α

=

=
=

= < < 

∂

= = < < ∂ 

 for all a r b≤ ≤ , h z h− ≤ ≤    (9)

1 1
1 20, 0,RL RL

r a r b

T TT k D T k D
r r

α α− −

= =

∂ ∂
+ = + =

∂ ∂
 for all h z h− ≤ ≤ , 

0t >  	 (10)

1
3 ( , ),RL

z h

TT k D f r t
z

α−

=

∂
+ =

∂
 1

4 0RL
z h

TT k D
z

α−

=−

∂
+ =

∂
 for all  a r b≤ ≤  , 

0t >  	 (11)

where 0( , ) ( ) ( ) /f r t r r P t rδ= −  is the sectional heat 
supply. 

Thermoelasticity in thick disc
The Navier’s equations can be expressed as per Noda et al. 
(2003)

2

2

2

2

1 1 2(1 ) 0
1 2 1 2

1 1 2(1 ) 0
1 2 1 2

t

t

U U U er
r r r z r r r

W W er
r r r z z z

υ θα
υ υ

υ θα
υ υ

∂ ∂ ∂ ∂ + ∂  + − + − = ∂ ∂ ∂ − ∂ − ∂ 
∂ ∂ ∂ ∂ + ∂  + − − = ∂ ∂ ∂ − ∂ − ∂ 

 	 (12)

and the dilatation as

U U We
r r z

∂ ∂
= + +
∂ ∂

 	 (13)

with displacement function
2

,MU
r r z
ϕ∂ ∂

= −
∂ ∂ ∂

 	 (14)

2 2

2 2

12(1 ) M M MW r
z r r r z z
ϕ υ

 ∂ ∂ ∂ ∂ ∂ = + − + −  ∂ ∂ ∂ ∂ ∂    	 (15)

in which ϕ  must satisfy

2

2

1 1
1 tr

r r r z
ϕ ϕ υ α θ

υ
∂ ∂ ∂ +   + =   ∂ ∂ ∂ −   

	  (16)

and the M  must satisfy
2 2

2 2

1 1 0r r M
r r r z r r r z
   ∂ ∂ ∂ ∂ ∂ ∂   + + =      ∂ ∂ ∂ ∂ ∂ ∂      

 	 (17)

The component of the stresses
2 2 2 2

2 2 2 2

1 1
2

rr Mr r M
G r r r r z z r r r z r

σ ϕ ϕ υ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    = − + + + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

,        (18)

2 2

2 2

1 1 1 1
2

Mr r M
G r r r r r z z r r r z r r
θθσ ϕ ϕ υ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    = − + + + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
,       (19)

2 2 2 2

2 2 2 2

1 1(2 )
2

zz Mr r M
G r r r r z z r r r z z

σ ϕ ϕ υ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    = − + + − + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

,    (20)

2 2 2

2 2

1(1 )
2

rz Mr M
G r z r r r r z z

σ ϕ υ
  ∂ ∂ ∂ ∂ ∂ ∂  = + − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 	 (21)

The mechanical boundary conditions are

0rr rrr a r b
σ σ

= =
= =  	 (22)

The mathematical formulation is comprised of Eqs. (1) 
to (22).

Solution of the Problem

Transient heat conduction analysis
We present the unconventional integral transform by Marchi 
and Fasulo (1967) with its inversion theorem as

1 2( ) ( ) ( , , ) ,
b

p na
g n r g r S k k r drµ= ∫

1 2
1

( ) ( ( ) / ) ( , , )p n p n
n

g r g n C S k k rµ
∞

=

=∑  	 (23)

and another integral transform by Marchi and Fasulo 
(1967) as 

( ) ( ) ( ) ,
h

m
h

f m f z P z dz
−

= ∫   
1

( )( , ) ( )m
m m

f mf z t P z
λ

∞

=

=∑  	 (24)

Using Eqs. (23)-(24), and (3), and one obtains

2
0 0 1 2 0

( , , ) ( , , ) ( , , ) ( )m n
d T n m t T n m t r S k k r P t

dt

α

α µ+Ψ = Λ  	 (25)

where 3 0( ) / ( )m m mP h k P zκΛ = +  and 2 2 2( )n maκ µΨ = + .
By applying the Laplace transform to Eq. (25) under initial 

conditions (9), one obtains
2

0 0 1 2 0( ) ( , , ) ( , , ) ( )m ns T n m s r S k k r P sα µ∗+Ψ = Λ  	 (26)

Using the inversion theorems in Eq. (26), one obtains

1
0 0 1 2 0 ,

1 1 0

0 1 2

( , , ) ( , , ) ( ) ( )

( ) ( , , ) /

t

m n
n m

m n m n

T r z t r S k k r E P t d

P z S k k r C

α α
α αµ τ τ τ τ

µ λ

∞ ∞
−

= =

   = Λ −Ψ −  
   

×

∑ ∑ ∫  	 (27)

Hence, the solution of Eq. (4) is

0

1
0 0 1 2 0 ,

1 1 0

( )

0 1 2

( , , ) ( , , ) ( ) ( )

( ) ( , , ) e
t

t

m n
n m

dm
n

m n

r z t r S k k r E P t d

P z S k k r
C

α α
α α

ψ ζ ζ

θ µ τ τ τ τ

µ
λ

∞ ∞
−

= =

   = Λ −Ψ −  
   

∫×

∑ ∑ ∫
    (28)

Eq. (28) describes the temperature of a thick disk 
with finite height under radiation circumstances at any 
given time and position. Here, in Eq. (28), the eigenvalues 

nµ  are the positive roots of the characteristic equation 
0 1 0 2( , ) ( , )J k a Y k bµ µ − 0 2 0 1( , ) ( , ) 0J k b Y k aµ µ = .  T h e  k e r n e l 

function 0 1 2( , , )nS k k rµ  can be def ined as 0 1 2( , , )nS k k rµ

0 0 1 0 2( )[ ( , ) ( , )]n n nJ r Y k a Y k bµ µ µ= + 0 0 1 0 2( )[ ( , ) ( , )]n n nY r J k a J k bµ µ µ− +  
with 0 0 0( , ) ( ) ( )i iJ k r J r k J rµ µ µ µ′= + , 0 0 0( , ) ( ) ( )i iY k r Y r k Y rµ µ µ µ′= +  
for 1,2i = , and 2

0 1 2[ ( , , )]
b

n na
C r S k k b drµ= ∫ , in which 0 ( )J rµ  and 0 ( )Y rµ

are Bessel functions of first and second kind of order 0p = , 
respectively. Further, in Eq. (28), we define the kernel as given 
by the orthogonal functions as ( ) cos( ) sin( )m m m m mP z Q a z W a z= −  
where 3 4( ) cos( ),m m mQ a k k a h= +  3 42cos( ) ( ) sin( ),m m m mW a h k k a a h= + −  

2 ( )
h

m mh
P z dzλ

−
= ∫ 2 2[ ]m mh Q W= +  2 2sin(2 )[ ] / 2m m m ma h Q W a+ − . The eigenvalues 



	 Thermoelastic response of a thick disc via time fractional-order effects	 2081

ma  are the positive roots of the characteristic equation 
3[ cos( ) sin( )]k a ah ah+ 4[cos( ) sin( )]ah k a ah+ 4[ cos( ) sin( )]k a ah ah= −  

3[cos( ) sin( )]ah k a ah− .

Thermoelastic solution
We assume Goodier’s thermoelastic displacement potential 
as 

0

1
0 0 1 2 0 ,

1 1 0

( )

0 1 22 2

1 ( , , ) ( ) ( )
1

( ) ( , , ) e
t

t

t m n
n m

dm
n

m n n m

r S k k r E P t d

P z S k k r
C a

α α
α α

ψ ζ ζ

υϕ α µ τ τ τ τ
υ

µ
λ µ

∞ ∞
−

= =

  +   = Λ −Ψ −   −     

∫×

∑ ∑ ∫
   (29)

We assume Michell’s function satisfies the governed 
condition of equation (12) as 

0

1
0 0 1 2 0 ,

1 1 0

( )

0 1 22 2

1 ( , , ) ( ) ( )
1

( ) [ sinh( ) cosh( )] ( , , ) e
t

t

t m n
n m

dm
n n n n n

m n n m

M r S k k r E P t d

P z A z B z z S k k r
C a

α α
α α

ψ ζ ζ

υ α µ τ τ τ τ
υ

µ µ µ
λ µ

∞ ∞
−

= =

  +   = Λ −Ψ −   −     

∫× +

∑ ∑ ∫
     (30)

where nA  and nB  are constants that are determined 
using Eq. (22) as

0 1 1 1 2

5 6 3 4

0 1 1 1 2

5 6 3 4

[ ( ) ( ) ] ,
sin( )

[ ( ) ( ) ]
sin( )

n n
n

m

j j
n

m

A J a A J b AA
B B hW h B B

B J b B J a B
B

B B hW h B B

µ µ
α

µ µ
α

+
=

−
−

=
−

 	 (31)

This approach involves the complete formulation of 
two displacement functions ϕ  and M. Now, to determine 
the displacement and thermal stress components, the 
thermoelastic displacement potential ϕ and Michell’s 
function M is replaced with Eqs. (14)-(15) and (18)-(21). The 
specific equation is excluded here for the sake of brevity but 
is taken into account during the numerical computation.

Numerical Results, Discussion and Remarks
The numerical computations have been carried out for 
an aluminum disc with thermomechanical properties as 
taken by Kumar et al. (2013): Modulus of elasticity E  = 70 
GPa , thermal diffusivity κ = 84.18 2 /m s , Poisson’s ratio υ  
=  0.35, Thermal expansion coefficient α  = 23 x 610− o/ C ,  
Thermal conductivity G , 204.2 /W mK .  The study uses 

0.96ik =  constant radiation coefficients and measures 
physical parameters using inner radius (a = 1 m), outer 
radius (b = 4 m), thickness (h = 2 m),  and surrounding 
temperature as 150℃. The study examined the impact of 
thermal load on the plate through numerical calculations 
and MATHEMATICA software-generated figures. The analysis 
of Figures 2 through 7 reveals that the fractional parameter 
α significantly impacts all domains, and the results for the 
typical parabolic equation, where α = 1.0, align with previous 
findings in thermoelasticity by Kumar et al. (2013). Figure 2 
displays the temperature distribution when the thick annular 
disk is at t = 0.75, both in the radial and thickness directions. 
A notable temperature rise was seen in the radial direction 
of the disk, particularly at the onset of the inner radius. This 
phenomenon can perhaps be attributed to the buildup of 

thermal energy resulting from the sectional heat supply. 
The propagation of disturbance within a medium leads to 
sudden changes, resulting in a non-uniform arrangement of 
temperature, diffusion, and strain field interactions.

The temperature decrease is expected to follow a 
gradual pattern in the radial direction. The temperature 
distributions throughout time t for cases α = 0.2, 0.4, 0.6, and 
0.9 are depicted in Figure 3. At time t = 0, the temperature 
values are zero, then reach the maximum values due to 
accumulated heat, and subsequently, they steadily decrease 

Figure 2: Temperature distribution along r- and z-direction for t = 0.75

Figure 3: Temperature profile along t for various α values

Figure 4: Radial stress distribution along r-axis and z-axis for t =1.25
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stress distribution along the radial direction of the disc at 
t = 0.75. The tangential stress follows a sinusoidal nature 
with high crest and troughs at both ends, i.e., r = 1 and  
r = 2. In the thickness direction, it follows a U-shaped curve 
with a minimum value at the mid portion. Figure 6 shows 
the axial stress distribution, which is similar in nature but 
negative in magnitude as compared to the radial stress 
component along the r-axis and z-axis for t = 0.75. The axial 
stress values show greater negative fluctuations due to 
the higher compressive force on the inner curved surface 
compared to the outer curved surface. for small time t = 
0.07 as well for large time t = 0.75. The axial stress values in 
the medium progressively rise towards the outside curve 
due to tensile force. The behavior and trend of variations in 
axial stress values for the CTE model show high similarity, 
except for their magnitudes. The central portion of the 
thickness experiences lower axial stress along the z-axis 
compared to the outer borders. Figure 7 shows the shear 
stress distribution along the radial and thickness direction 
of the thick disc at t = 0.75. Shear stress also follows more 
sine waveform with high peaks and troughs along the radial 
direction at r = 1 and r = 2, but minimum at the center part 
along the thickness direction.

Conclusion
This study focuses on the quasi-static uncoupled theory 
of fractional-order heat conduction, excluding the inertia 
element in the equation of motion. The study uses the 
temporal and spatial fractional differential operators 
to describe the impacts of memory and long-range 
interactions. The heat conduction equation is parabolic 
and designed to forecast wave propagation in terms of 
heat energy in an infinite manner. The study examines the 
fractional theory because it can predict a delayed reaction to 
physical stimuli, unlike the immediate response anticipated 
by the generalized theory of thermoelasticity. The research 
aims to explore the impact of fractional heat conduction on 
thermoelasticity using a quasi-static methodology.
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