Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.17Keywords:
Transient response, thick disc, fractional-order derivative, temperature distribution, thermal stress, integral transformDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The study investigates thermal interactions in a two-dimensional time fractional-order thermoelastic problem in a homogeneous, isotropic, and perfectly conducting thick annular disc subjected to a point impulsive sectional heat source. We utilize unconventional integral transformation techniques to study the thermoelastic response of a disc, in which an internal heat source is generated according to the linear function of the temperature and radiation-type boundary conditions. The time fractional-order thermoelastic theory is used to determine temperature, displacement, and stresses through a series of Bessel functions. Numerical calculations analyze fractional-order parameters on aluminum discs, incorporating time-based fractional derivatives into field equations for practical engineering scenarios, enhancing thermal properties analysis.Abstract
How to Cite
Downloads
Similar Articles
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shyamkant M. Khonde, Lata Suresh, Globalization and the evolution of labor: Navigating new frontiers in the global economy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Payal Dalal, The Silent Scars: Child Sexual Abuse and the Burden of Memory in Anuradha Roy’s Sleeping on Jupiter , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Aishwarya Jha, Jyoti Gangta, Neha Kapur, Comparison of anterior corneal aberrometry, keratometry and pupil size with Scheimpflug tomography and ray tracing aberrometer in moderate and high refractive error , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Nikhil Kumar, Namita Kumar, Numerical Response of Campoletis chloridae Uchida (Hymenoptera: Ichneumonidae), a parasitoid of Heliothis armigera (Hubner) (Lepidoptera : Noctuidae) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Isreal Zewide, Tamiru Boni, Wondwosen Wondimu, Kibinesh Adimasu, Yield and economics of bean (Phaseolus vulgaris L.) as affected by blended NPS fertilizer rates and inter row spacing at maenitgoldia, Southwest Ethiopia , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sivasankar G. A, Study of hybrid fuel injectors for aircraft engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Mohit, Rishi Chaudhry, Exploring the landscape of brand extensions: A bibliometric analysis of scholarly trends and insights , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Anubha Kumari, Nalini Bhardwaj, Studies on Physicochemical Status of Two Ponds in Chapra District , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

