Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.26Keywords:
Pre-Post harvesting, Machine learning, CNN, Computer vision, Supply Chain Management, Deep LearningDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
It is becoming increasingly vital in supply chain management to use different algorithms, particularly when it comes to pre and post-harvesting of grapes. This is especially true in the wine industry. Grapes must be processed both before and after harvesting as part of the management process for supply chains in the food industry. The grape bunch identification in vineyards was performed using machine learning at various stages of growth, including early stages immediately after flowering and intermediate stages when the grape bunch reached intermediate developmental stages. The machine learning method can predict annual grape output and also identify grape harvesting. The impressive performance of the pre-trained model shows that architecture training using different algorithms differs in the performance of grape predictions. We achieved 100% accuracy in grape prediction using LR, DT, RF, NUSVC, Adaboost and gradient algorithms, while KNN and SVC lag behind with an accuracy of 83.33% each. Our model includes the color and size of the grapes to differ in grape quality using a variety of grape images as a reference. It is capable of predicting the maturity stage of grapes by predicting Brix, TA and pH values (ranging between 18.20–25.70, 5.67–9.83 and 2.93–3.77) according to the size and color of grapes.We compared different algorithms and their performances by evaluating grape quality prediction accuracy, processing time and memory consumption.Abstract
How to Cite
Downloads
Similar Articles
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Aakanksha Laiker, Promil Pande, Contribution of policy and regulations to enhance Transparency and Traceability in the Garment Industry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sharada C, T N Ravi, S Panneer Arokiara, Lancaster sliced regressive keyword extraction based semantic analytics on social media documents , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

