Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.26Keywords:
Pre-Post harvesting, Machine learning, CNN, Computer vision, Supply Chain Management, Deep LearningDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
It is becoming increasingly vital in supply chain management to use different algorithms, particularly when it comes to pre and post-harvesting of grapes. This is especially true in the wine industry. Grapes must be processed both before and after harvesting as part of the management process for supply chains in the food industry. The grape bunch identification in vineyards was performed using machine learning at various stages of growth, including early stages immediately after flowering and intermediate stages when the grape bunch reached intermediate developmental stages. The machine learning method can predict annual grape output and also identify grape harvesting. The impressive performance of the pre-trained model shows that architecture training using different algorithms differs in the performance of grape predictions. We achieved 100% accuracy in grape prediction using LR, DT, RF, NUSVC, Adaboost and gradient algorithms, while KNN and SVC lag behind with an accuracy of 83.33% each. Our model includes the color and size of the grapes to differ in grape quality using a variety of grape images as a reference. It is capable of predicting the maturity stage of grapes by predicting Brix, TA and pH values (ranging between 18.20–25.70, 5.67–9.83 and 2.93–3.77) according to the size and color of grapes.We compared different algorithms and their performances by evaluating grape quality prediction accuracy, processing time and memory consumption.Abstract
How to Cite
Downloads
Similar Articles
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Heena Gulia, Sunder Singh Arya, Neha Yadav, Ajay Kumar, Monika Janaagal, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Yadav, Sudershan Singh, Reetu Verma, Strategies for adaptations and mitigation of abiotic stresses in crops: A review , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Poonam Sharma, Anindita S.Chaudhuri, Subhash Anand, Ankur Srivastava, Ashutosh Mohanty , Pravin Kokne, Measuring the relationship of land use land cover, normalized difference vegetation index and land surface temperature in influencing the urban microclimate in northeast Delhi, India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sivasankar G A, T Thirunavukkarasu, A pragmatic study of organizational behaviour in aerospace companies , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Worku Masho, Habtamu Arega, Elias Bayou, Regasa Begna, The Effect of estrus synchronization with prostaglandin (PGF2α) hormone on reproductive performances of Bonga sheep ewes flushed with different local forages in Kaffa zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- J. Pavithra, Status of investment in startup in India – An analysis , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

