Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.26Keywords:
Pre-Post harvesting, Machine learning, CNN, Computer vision, Supply Chain Management, Deep LearningDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
It is becoming increasingly vital in supply chain management to use different algorithms, particularly when it comes to pre and post-harvesting of grapes. This is especially true in the wine industry. Grapes must be processed both before and after harvesting as part of the management process for supply chains in the food industry. The grape bunch identification in vineyards was performed using machine learning at various stages of growth, including early stages immediately after flowering and intermediate stages when the grape bunch reached intermediate developmental stages. The machine learning method can predict annual grape output and also identify grape harvesting. The impressive performance of the pre-trained model shows that architecture training using different algorithms differs in the performance of grape predictions. We achieved 100% accuracy in grape prediction using LR, DT, RF, NUSVC, Adaboost and gradient algorithms, while KNN and SVC lag behind with an accuracy of 83.33% each. Our model includes the color and size of the grapes to differ in grape quality using a variety of grape images as a reference. It is capable of predicting the maturity stage of grapes by predicting Brix, TA and pH values (ranging between 18.20–25.70, 5.67–9.83 and 2.93–3.77) according to the size and color of grapes.We compared different algorithms and their performances by evaluating grape quality prediction accuracy, processing time and memory consumption.Abstract
How to Cite
Downloads
Similar Articles
- Archana Borde, Dattatraya Pandurang Rane, Pratap Vasantrao Pawar, Role of artificial intelligence in digital marketing in enhancing customer engagement , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Isreal Zewide, A coffee biochar-mineral NP interaction: Boon for soil health , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ali Dakheel, Ismaeil Mammani, Jiyar Naji, The effect of human periodontal pathogenic bacteria on immediate basal implant placement: A comparative study in beagle dogs , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bhavesh Parekh, Parthiv Patel, Unravelling Indianness in R.K. Narayan’s novels: A multidisciplinary exploration of culture, tradition and modernity , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Elizabeth Mize, A critical analysis of the continuing professional development of teachers in India through the lens of NEP 2020 , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ramesh Babu Durai C, D. Madhivadhani, A. Sumathi, Lily Saron Grace, Graph neural networks for modeling ecological networks and food webs , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- A. Appu, How does brand equity influence the intent of e-bike users? Evidence from Chennai city , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 43 44 45 46 47 48 49 > >>
You may also start an advanced similarity search for this article.

