Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.26Keywords:
Pre-Post harvesting, Machine learning, CNN, Computer vision, Supply Chain Management, Deep LearningDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
It is becoming increasingly vital in supply chain management to use different algorithms, particularly when it comes to pre and post-harvesting of grapes. This is especially true in the wine industry. Grapes must be processed both before and after harvesting as part of the management process for supply chains in the food industry. The grape bunch identification in vineyards was performed using machine learning at various stages of growth, including early stages immediately after flowering and intermediate stages when the grape bunch reached intermediate developmental stages. The machine learning method can predict annual grape output and also identify grape harvesting. The impressive performance of the pre-trained model shows that architecture training using different algorithms differs in the performance of grape predictions. We achieved 100% accuracy in grape prediction using LR, DT, RF, NUSVC, Adaboost and gradient algorithms, while KNN and SVC lag behind with an accuracy of 83.33% each. Our model includes the color and size of the grapes to differ in grape quality using a variety of grape images as a reference. It is capable of predicting the maturity stage of grapes by predicting Brix, TA and pH values (ranging between 18.20–25.70, 5.67–9.83 and 2.93–3.77) according to the size and color of grapes.We compared different algorithms and their performances by evaluating grape quality prediction accuracy, processing time and memory consumption.Abstract
How to Cite
Downloads
Similar Articles
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

