A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.50Keywords:
Hidden markov model, Markov chain transition, Likelihood estimation, Poisson distribution.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Background: Since increased interest of consumers, cloud computing is needed to store and access the information about their data in their convenient way. In recent days, cloud computing offers many services stipulated by the internet. Data duplication is one of the main challenges in big data analytics that leads to increased data storage and processing time. Therefore, there is a need to develop a data deduplication process. It eliminates excessive copies of data as well as decreases the storage space. In order to preserve the accurate data information without any duplication, joint probability distribution computes the likelihood of two events occurring together at the same time and thus it leads to removing the redundant data before data is sent to the cloud server.Abstract
Methods: this paper presents a GSM algorithm that uses hidden markov model, likelihood estimation, markov chain transition, and poisson distribution model.
Findings: Joint probability distribution computes the likelihood of two events occurring together at the same time and thus it leads to removing the redundant data before data is sent to the cloud server.
Novelty and applications: This paper proposes the general stochastic model (GSM) to handle redundant data by a multi-level process using hidden markov model (HMM), likelihood estimation, transition probability and poisson distribution model (PDM).
How to Cite
Downloads
Similar Articles
- G. C. Sowparnika, D. A. Vijula, Modeling and control of boiler in thermal power plant using model reference adaptive control , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Dividend policy and banks’ performance: Assessing the relevance versus irrelevance theory , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Bhavika Bhagyesh Lad, Sonam Mansukhani, Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, The green inventory model for sustainable environment that includes degrading products and backordering with integration of environmental cost , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

