Quantum Key Distribution-based Techniques in IoT
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.69Keywords:
Authentication,Cryptography, Internet of Things, Quantum Computing, Quantum Key Distribution.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Quantum key distribution (QKD) is a cryptographic technique that creates a secure channel of communication between two parties by applying the ideas of quantum physics. QKD ensures the confidentiality and integrity of data transmission by providing a unique key that the intended recipient can only access. Secure communication has become paramount with the proliferation of IoT (Internet of Things) devices. IoT devices have confined computational power and storage, making them vulnerable to attacks. QKD provides a safe and efficient solution for securing communication between IoT devices. This paper examines how QKD can be utilized in IoT, discussing its benefits and limitations, followed by the discussion on various QKD protocols suitable for IoT devices. In addition, the paper demonstrates that QKD is a promising solution for securing IoT communication, and its adoption significantly enhances the security and reliability of IoT networks.Abstract
How to Cite
Downloads
Similar Articles
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Naveen Kumar, Renu, Suresh Kumar Gahlawat, Anil Kumar, Vikram Delu, Pooja, Shekhar Anand, Suresh Chandra Singh, Arbind Acharya, Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Aditi Malik, Rishi Chaudhry, Mohit, Urvashi Suryavanshi, Mapping the landscape of political advertising research: A comprehensive bibliometric analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rahat Yezdani, S. M. K. Quadri, A PPR-based energy-efficient VM consolidation in cloud computing , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sawitri Devi, Raj Kumar, Unveiling scholarly insights: A bibliometric analysis of literature on gender bias at the workplace , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.

