Quantum Key Distribution-based Techniques in IoT
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.69Keywords:
Authentication,Cryptography, Internet of Things, Quantum Computing, Quantum Key Distribution.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Quantum key distribution (QKD) is a cryptographic technique that creates a secure channel of communication between two parties by applying the ideas of quantum physics. QKD ensures the confidentiality and integrity of data transmission by providing a unique key that the intended recipient can only access. Secure communication has become paramount with the proliferation of IoT (Internet of Things) devices. IoT devices have confined computational power and storage, making them vulnerable to attacks. QKD provides a safe and efficient solution for securing communication between IoT devices. This paper examines how QKD can be utilized in IoT, discussing its benefits and limitations, followed by the discussion on various QKD protocols suitable for IoT devices. In addition, the paper demonstrates that QKD is a promising solution for securing IoT communication, and its adoption significantly enhances the security and reliability of IoT networks.Abstract
How to Cite
Downloads
Similar Articles
- Vibhoo Bajpai, Public policy as a nudger of cultural sustainability amidst rapid urbanization: A case of Delhi NCR , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Payal Saxena, Sustainable finance – A master key to sustainable development , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- N. Yogalakshmi, Awareness on environmental issues and sustainable practices among college students - with special reference to Chennai city region , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Suman Saurabh, Prashant Kumar, CLIMATE CHANGE EFFECTS ON AQUATIC ECOSYSTEM: STRUCTURE AND DISEASE , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Dhirender ., HISTOENZYMOLOGICAL OBSERVATIONS ON ACID PHOSPHATASE ACTIVITY IN THE OESOPHAGUS OF HGCL2- TREATED FISH, LABEO ROHITA , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Sweta Sain, Nilima Kumari, BN Tirpathi, ETHNOBOTANICAL STUDIES ON MEDICINAL PLANTS OF BANASTHALI REGION OF TONK DISTRICT, RAJASTHAN (INDIA) , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Heena Gulia, Sunder Singh Arya, Neha Yadav, Ajay Kumar, Monika Janaagal, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Yadav, Sudershan Singh, Reetu Verma, Strategies for adaptations and mitigation of abiotic stresses in crops: A review , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Vibhu Tripathi, World Health Summit 2025- Taking Responsibility for Health in a Fragmenting World , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Shelly Nanda, Manjit Singh, MICOM analysis of gender differences in Parasocial Interaction and Impulse Buying Behavior , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

