Quantum Key Distribution-based Techniques in IoT
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.69Keywords:
Authentication,Cryptography, Internet of Things, Quantum Computing, Quantum Key Distribution.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Quantum key distribution (QKD) is a cryptographic technique that creates a secure channel of communication between two parties by applying the ideas of quantum physics. QKD ensures the confidentiality and integrity of data transmission by providing a unique key that the intended recipient can only access. Secure communication has become paramount with the proliferation of IoT (Internet of Things) devices. IoT devices have confined computational power and storage, making them vulnerable to attacks. QKD provides a safe and efficient solution for securing communication between IoT devices. This paper examines how QKD can be utilized in IoT, discussing its benefits and limitations, followed by the discussion on various QKD protocols suitable for IoT devices. In addition, the paper demonstrates that QKD is a promising solution for securing IoT communication, and its adoption significantly enhances the security and reliability of IoT networks.Abstract
How to Cite
Downloads
Similar Articles
- Vijetna Singh, Alka Thakur, ECOLOGICAL ENGINEERING OF MICROALGAE FOR ENHANCED ENERGY PRODUCTION , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Princee Jain, Kalidasan Varathan, Effect of whole-body vibration on sensation, functional mobility and gait on diabetic neuropathy patients , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Tulika ., EFFECT OF FURADAN ON HAEMATOLOGY OF Channa punctatus (BLOCH) IN CULTURE MEDIUM UNDER LABORATORY CONDITIONS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Priya Rajwade, Alka Bansal, A study of the perceptions of teachers towards a holistic approach in teaching in CBSE board schools in the context of NEP 2020 at the foundational and preparatory stages , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Assessing students’ perception of the academic features of the Gyankunj Project , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mohiyuddeen Hafzal, Management strategies for sustainable development goals: A roadmap to Viksit Bharat@2047 , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.

