Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.27Keywords:
Air quality, Deep learning models, Tree-structured parzen estimators, Hyperparameter tuning.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The research introduces an innovative approach to enhance deep learning models for air quality classification by integrating tree-structured Parzen estimators (TPE) into the hyperparameter tuning process. It applies this approach to CNN, LSTM, DNN, and DBN models and conducts extensive experiments using an air quality dataset, comparing it with grid search, random search, and genetic algorithm methods. The TPE algorithm consistently outperforms these methods, demonstrating improved classification accuracy and generalization. This approach’s potential extends to enriching water quality classification models, contributing to environmental sustainability and resource management. Bridging deep learning with TPE offers a promising solution for optimized air quality classification, supporting informed environmental preservation efforts.Abstract
How to Cite
Downloads
Similar Articles
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jivesh Jha, Sonia D Sharma, Role of law to combat ecological imbalance in Nepal , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Roopshree Banchode, Sai Pranathi Bhallamudi, S. P. Kanchana, Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Ravindra K. Kushwaha, Sonia Patel, Sarfaraz Ahmad, Indian education through a G20 lens-Ensuring continuity of sustainable development , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- JOSHI GK, WATER QUALITY ASSESSMENT OF RIVER ALAKNANDA , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.