Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.27Keywords:
Air quality, Deep learning models, Tree-structured parzen estimators, Hyperparameter tuning.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The research introduces an innovative approach to enhance deep learning models for air quality classification by integrating tree-structured Parzen estimators (TPE) into the hyperparameter tuning process. It applies this approach to CNN, LSTM, DNN, and DBN models and conducts extensive experiments using an air quality dataset, comparing it with grid search, random search, and genetic algorithm methods. The TPE algorithm consistently outperforms these methods, demonstrating improved classification accuracy and generalization. This approach’s potential extends to enriching water quality classification models, contributing to environmental sustainability and resource management. Bridging deep learning with TPE offers a promising solution for optimized air quality classification, supporting informed environmental preservation efforts.Abstract
How to Cite
Downloads
Similar Articles
- Binay Kumar Mahto, Rakesh Patel, Rajendra Bapna, Ajay Kumar Shukla, Development and Standardization of a Poly Herbal Formulation , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Brij M. Sharma, Parul Singhal, Neeraj Uniyal, Ram T. Mourya, Jai Sharma, Community based seasonally water quality testing of tributaries of Dehradun , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S K Bairagi, Ram Chandra, R P Singh, Effect of Different Phosphorus and Potassium Levels on a Seed Crop of French Bean (Phaseolus vulgaris L.) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Parul Yadav, Priyanka Suryavanshi, Storage study on compositional analysis of quinoa and ragi based snacks , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sandip Sane, Diksha Tripathi, Nitin Ranjan, Digital transformation in management education: Bridging theory and practice , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Karthik Gangadhar, Prem Kumar N, Neuroprotective activity of alcoholic extract of Operculina turpethum roots in aluminum chloride-induced Alzheimer’s disease in rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vandana, Ambrish Pandey, Comparative study of delta e of hybrid modulated and digitally modulated screening on different grades of paper , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vaishali P. Kuralkar, Prabodh Khampariya, Shashikant M. Bakre, Study and analysis of the stochastic harmonic distortion caused by multiple converters in the power system (micro-grid) , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ahmed Mustefa, Efficacy of coffee farmers’ cooperatives in Gimbo Woreda, Kafa Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Suman Kumar Saurabh, Prashant Kumar, Per Recruit Models for Stock Assessment and Management of Carp Fishes in the Pattipul Stream, Sheetalpur, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.