Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.58Keywords:
IoT (Internet of things), Encryption and decryption, Malicious fraudsters closed-form expression, Embedded data.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An internet of things (IoT) is an intelligent environment such as homes and smart cities of our country, and IoT improves the new technology implementation for home automation. The problem with security in IoT-based devices is that data transmission and signal passing are easily hacked using encryption and decryption methods. The old technology of the Steganography method does not improve the data hidden in images because encryption and decryption use a 1-bit 0.05-bit store, and low ranges hide the information in images, so that information hides out of the size and bits of the image. The hackers easily hack the hide information pixel by pixel or bit by bit in images. So, need for a proposed system, new technology, or methods. The suggested solution improves data concealment in photos by combining CNN’s deep learning techniques with steganography. The secret information these photographs convey can be shared without drawing hackers’ notice. The data is encrypted before being embedded in the image to increase its security. Steganography messages are frequently encrypted using more conventional methods first, after which the encrypted message is added to the cover image in some manner. The previous algorithm of SFNET algorithm architecture has been divided by segment, the segment based on width, height, and depth changes based improve performances. Existing systems of SFNET and SRNET are compared to the fractal net algorithm to improve the performance of 3 to 1 % of the proposed system.Abstract
How to Cite
Downloads
Similar Articles
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kapil ahuja, Ekta Rani, Soniya Devi, Exploring the dynamic landscape of environmental, social, and governance literature by using bibliometric analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Prerna Khanna, Satinder Kumar, Exploring the expansion trajectory of the Indian automobile sector , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sonal R. Vasant, Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Renuka Thapliyal, Can Shimla be fitted into the compact city model? , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sawitri Devi, Raj Kumar, Unveiling scholarly insights: A bibliometric analysis of literature on gender bias at the workplace , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 29 30 31 32 33 34 35 36 37 38 > >>
You may also start an advanced similarity search for this article.

