Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.58Keywords:
IoT (Internet of things), Encryption and decryption, Malicious fraudsters closed-form expression, Embedded data.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An internet of things (IoT) is an intelligent environment such as homes and smart cities of our country, and IoT improves the new technology implementation for home automation. The problem with security in IoT-based devices is that data transmission and signal passing are easily hacked using encryption and decryption methods. The old technology of the Steganography method does not improve the data hidden in images because encryption and decryption use a 1-bit 0.05-bit store, and low ranges hide the information in images, so that information hides out of the size and bits of the image. The hackers easily hack the hide information pixel by pixel or bit by bit in images. So, need for a proposed system, new technology, or methods. The suggested solution improves data concealment in photos by combining CNN’s deep learning techniques with steganography. The secret information these photographs convey can be shared without drawing hackers’ notice. The data is encrypted before being embedded in the image to increase its security. Steganography messages are frequently encrypted using more conventional methods first, after which the encrypted message is added to the cover image in some manner. The previous algorithm of SFNET algorithm architecture has been divided by segment, the segment based on width, height, and depth changes based improve performances. Existing systems of SFNET and SRNET are compared to the fractal net algorithm to improve the performance of 3 to 1 % of the proposed system.Abstract
How to Cite
Downloads
Similar Articles
- Suresh L. Chitragar, Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nitika, Kuldeep Chaudhary, A critical review of social media advertising literature: Visualization and bibliometric approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saumya Trivedi, Amit Sinha, Satyendra P. Singh, Ramya Singh, A study on factors influencing lending decisions for MSMEs by scheduled commercial banks in the CGTSME scheme , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Geeta S. Desai, Santosh Hajare, Sangeeta Kharde, Evaluation of health practices among individuals with non-alcoholic fatty liver disease: A randomized controlled trial , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Syam Sundar. S, Direct reuse of scour and bleach effluent water for cotton knitted fabrics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 31 32 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.

