Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.58Keywords:
IoT (Internet of things), Encryption and decryption, Malicious fraudsters closed-form expression, Embedded data.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An internet of things (IoT) is an intelligent environment such as homes and smart cities of our country, and IoT improves the new technology implementation for home automation. The problem with security in IoT-based devices is that data transmission and signal passing are easily hacked using encryption and decryption methods. The old technology of the Steganography method does not improve the data hidden in images because encryption and decryption use a 1-bit 0.05-bit store, and low ranges hide the information in images, so that information hides out of the size and bits of the image. The hackers easily hack the hide information pixel by pixel or bit by bit in images. So, need for a proposed system, new technology, or methods. The suggested solution improves data concealment in photos by combining CNN’s deep learning techniques with steganography. The secret information these photographs convey can be shared without drawing hackers’ notice. The data is encrypted before being embedded in the image to increase its security. Steganography messages are frequently encrypted using more conventional methods first, after which the encrypted message is added to the cover image in some manner. The previous algorithm of SFNET algorithm architecture has been divided by segment, the segment based on width, height, and depth changes based improve performances. Existing systems of SFNET and SRNET are compared to the fractal net algorithm to improve the performance of 3 to 1 % of the proposed system.Abstract
How to Cite
Downloads
Similar Articles
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Avdhesh Kumar, Manoj Agarwal, Studies on challenges and opportunities for foreign direct investment in the automobile industry in India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Joshitha, A. Yakshitha, Mariyam Adnan, Diversification and application of Warli art on apparels , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Priydarshi Shireesh, Tiwari Atul Kumar, Singh Prashant, Rai Kumud, Mishra Dev Brat, Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

