Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.58Keywords:
IoT (Internet of things), Encryption and decryption, Malicious fraudsters closed-form expression, Embedded data.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An internet of things (IoT) is an intelligent environment such as homes and smart cities of our country, and IoT improves the new technology implementation for home automation. The problem with security in IoT-based devices is that data transmission and signal passing are easily hacked using encryption and decryption methods. The old technology of the Steganography method does not improve the data hidden in images because encryption and decryption use a 1-bit 0.05-bit store, and low ranges hide the information in images, so that information hides out of the size and bits of the image. The hackers easily hack the hide information pixel by pixel or bit by bit in images. So, need for a proposed system, new technology, or methods. The suggested solution improves data concealment in photos by combining CNN’s deep learning techniques with steganography. The secret information these photographs convey can be shared without drawing hackers’ notice. The data is encrypted before being embedded in the image to increase its security. Steganography messages are frequently encrypted using more conventional methods first, after which the encrypted message is added to the cover image in some manner. The previous algorithm of SFNET algorithm architecture has been divided by segment, the segment based on width, height, and depth changes based improve performances. Existing systems of SFNET and SRNET are compared to the fractal net algorithm to improve the performance of 3 to 1 % of the proposed system.Abstract
How to Cite
Downloads
Similar Articles
- Neha Chitale, Lajwanti Lalwani, A Bibliometric Analysis of Global Research From 1928 To 2019 On Mobilization with Movement on Functional Disability in Low Back Pain , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mahima Srivastava, Chemical facets of environment-friendly corrosion impediment of low-carbon steel in aqueous solutions of inorganic mineral acid , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

