Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.58Keywords:
IoT (Internet of things), Encryption and decryption, Malicious fraudsters closed-form expression, Embedded data.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An internet of things (IoT) is an intelligent environment such as homes and smart cities of our country, and IoT improves the new technology implementation for home automation. The problem with security in IoT-based devices is that data transmission and signal passing are easily hacked using encryption and decryption methods. The old technology of the Steganography method does not improve the data hidden in images because encryption and decryption use a 1-bit 0.05-bit store, and low ranges hide the information in images, so that information hides out of the size and bits of the image. The hackers easily hack the hide information pixel by pixel or bit by bit in images. So, need for a proposed system, new technology, or methods. The suggested solution improves data concealment in photos by combining CNN’s deep learning techniques with steganography. The secret information these photographs convey can be shared without drawing hackers’ notice. The data is encrypted before being embedded in the image to increase its security. Steganography messages are frequently encrypted using more conventional methods first, after which the encrypted message is added to the cover image in some manner. The previous algorithm of SFNET algorithm architecture has been divided by segment, the segment based on width, height, and depth changes based improve performances. Existing systems of SFNET and SRNET are compared to the fractal net algorithm to improve the performance of 3 to 1 % of the proposed system.Abstract
How to Cite
Downloads
Similar Articles
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Gomathi, C. Radhika, A secure messaging application using steganography and AES encryption a dual-layer secure messaging system , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

