Prediction of automobile insurance fraud claims using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.29Keywords:
Prediction, Automobile, Insurance, Fraud claims, Machine learning, Fraud detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automobile insurance fraud is a significant issue for insurance firms, causing financial losses and higher premiums for policyholders. This study aims to create a predictive model for accurately identifying potential vehicle insurance fraud claims. Understanding fraud detection processes and operationalizing information communication technology is crucial for implementing corrective actions, but personally reviewing insurance claims is time-consuming and costly. This study explored machine learning algorithms to detect fraudulent vehicle insurance claims. The research evaluated AdaBoost, XGboostNB, SVM, LR, DT, ANN, and RF. AdaBoost and XGBoost classifiers outperformed other models with 84.5% classification accuracy, while LR classifiers performed poorly with balanced and unbalanced data. The ANN classifier performed better with unbalanced data. Performance evaluation metrics such as accuracy, precision, recall, and F1 score are utilized to assess the effectiveness of the models. The results demonstrate the effectiveness of machine learning in distinguishing between genuine and fraudulent claims, providing insurance companies with a powerful tool to proactively combat fraud and improve their overall risk management strategies. The findings of this research contribute to the insurance industry’s efforts to enhance fraud detection systems, reduce financial losses, and offer more competitive insurance premiums to honest policyholders.Abstract
How to Cite
Downloads
Similar Articles
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.