Prediction of automobile insurance fraud claims using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.29Keywords:
Prediction, Automobile, Insurance, Fraud claims, Machine learning, Fraud detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automobile insurance fraud is a significant issue for insurance firms, causing financial losses and higher premiums for policyholders. This study aims to create a predictive model for accurately identifying potential vehicle insurance fraud claims. Understanding fraud detection processes and operationalizing information communication technology is crucial for implementing corrective actions, but personally reviewing insurance claims is time-consuming and costly. This study explored machine learning algorithms to detect fraudulent vehicle insurance claims. The research evaluated AdaBoost, XGboostNB, SVM, LR, DT, ANN, and RF. AdaBoost and XGBoost classifiers outperformed other models with 84.5% classification accuracy, while LR classifiers performed poorly with balanced and unbalanced data. The ANN classifier performed better with unbalanced data. Performance evaluation metrics such as accuracy, precision, recall, and F1 score are utilized to assess the effectiveness of the models. The results demonstrate the effectiveness of machine learning in distinguishing between genuine and fraudulent claims, providing insurance companies with a powerful tool to proactively combat fraud and improve their overall risk management strategies. The findings of this research contribute to the insurance industry’s efforts to enhance fraud detection systems, reduce financial losses, and offer more competitive insurance premiums to honest policyholders.Abstract
How to Cite
Downloads
Similar Articles
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ashutosh Pathak, Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Avdhesh Kumar, Manoj Agarwal, Studies on challenges and opportunities for foreign direct investment in the automobile industry in India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- James L T Thanga, Ashley Lalremruati, Agent’s roles and perspectives of life insurance market in North-East India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Chetna Dhull, Asha ., Impact of crop insurance and crop loans on agricultural growth in Haryana: A factor analysis approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.