Classifying enset based on their disease tolerance using deep learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.23Keywords:
Deep learning, VGG-19, VGG-16, Enset, CNN.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Even though agriculture remains the main source of Ethiopia’s population economy, not identifying enset based on their disease tolerance level is an obstacle for the production of enset.This paper’s main objective is to automatically identify the disease resistance levels of enset plants through digital image. The researcher followed the design science research method to achieve the objective listed above. Besides, the researcher has attempted to get valuable information about the type and the nature of these classes from the domain expert through interviews, document analysis, and observation from the fields. The total number of images used for experimentation purposes was 3000. The Contaharmonic filtering technique was implemented to remove noise due to its highest entropy recorded. A deep learning-based approach with training from scratch and transfer learning convolutional neural network methods were applied. Based on this, the researcher made experimentation for transfer learning by using two different pre-trained models, namely VGG-19 and VGG-16. Finally, the developed classifier model’s performance was assessed using accuracy, precision, recall, and the F1 score. According to the interpretation of the results, the proposed model’s training from scratch method achieves 92.6%. On the other way, the accuracy obtained with the transfer learning method, VGG-16 achieves 98.5%, and VGG-19 achieves 93.9%. Hence, transfer learning, specifically the VGG-16 model revealed an effective and robust performance for classifying enset based on their disease tolerance level based on the researcher’s number of images.Abstract
How to Cite
Downloads
Similar Articles
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

